大学入試の因数分解 松山大 - 質問解決D.B.(データベース)

大学入試の因数分解 松山大

問題文全文(内容文):
$(a+b+c+1)(a+1)+bc$を因数分解

松山大学
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(a+b+c+1)(a+1)+bc$を因数分解

松山大学
投稿日:2021.04.22

<関連動画>

【数Ⅰ】【数と式】根号を含む計算 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \frac{\sqrt{2}}{\sqrt{2}-1}$の整数部分をa、小数部分をbとする。

次の式の値を求めよ。
(1)$a$ (2)$b$ (3)$a+b+b^2$


次の各場合について、$\sqrt{x^2-10x+25}$ をxの多項式で表せ。
(1)x≧5 (2)x<5
この動画を見る 

【高校数学】数Ⅰ-5 展開②(練習編)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(x+4y)(3x-2y)$
②$(-3x-y)(y-3x)$
③$(3m-a)(2m-5a)$
④$(3a-\displaystyle \frac{1}{2}b)^2$
⑤$(a+2b)^2(a-2b)^2$
⑥$(x-2)(x+2)(x^2+4)$
⑦$(x+y)^2(x-y)^2(x^2+y^2)^2$
⑧$(2a+b)(4a^2+b^2)(2a-b)$
この動画を見る 

和と差の積は? 灘高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(c-a)^2+3b^2 = 4b\\
(a-b)^2+3c^2 = 4c\\
b \neq c
\end{array}
\right.
\end{eqnarray}
$
aをb,cの1次式で表せ。

灘高等学校
この動画を見る 

「二次関数の最大最小 場合分け②】【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a \gt b0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(1)$f(x)$の最小値$m(a)$を求めよ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(3)$k=m(a)$のグラフをかけ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(4)$K=M(a)$のグラフをかけ。
この動画を見る 

福田のわかった数学〜高校1年生032〜否定分の作り方(2)

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 否定分の作り方(2)\\
次の関数f(x)についての命題を否定せよ。\\
\\
「N以上の全ての自然数nについてf(n) \leqq 2」\\
が成り立つような自然数Nが存在する。
\end{eqnarray}
この動画を見る 
PAGE TOP