福田の数学〜過去の入試問題(期間限定)〜千葉大学理系2020第1問〜確率の基本性質 - 質問解決D.B.(データベース)

福田の数学〜過去の入試問題(期間限定)〜千葉大学理系2020第1問〜確率の基本性質

問題文全文(内容文):
Aさんは1が書かれたカードを1枚、2が書かれたカードを2枚、4が書かれたカードを1枚、計4枚を無作為に横一列に並べて4桁の数Xを作る。Bさんは2が書かれたカードを2枚、3が書かれたカードを2枚、計4枚を無作為に横一列に並べて4桁の数Yを作る。

$$(1)Xが4の倍数となる確率を求めよ。

(2)X \lt Yとなる確率を求めよ。$$
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Aさんは1が書かれたカードを1枚、2が書かれたカードを2枚、4が書かれたカードを1枚、計4枚を無作為に横一列に並べて4桁の数Xを作る。Bさんは2が書かれたカードを2枚、3が書かれたカードを2枚、計4枚を無作為に横一列に並べて4桁の数Yを作る。

$$(1)Xが4の倍数となる確率を求めよ。

(2)X \lt Yとなる確率を求めよ。$$
投稿日:2025.01.22

<関連動画>

大学入試の因数分解 神戸女子大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^4+a^2b^2+b^4$

神戸女子大学
この動画を見る 

2023東大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
黒3,赤4,白5を一列に並べる.
(1)どの赤も隣り合わない確率を求めよ.
(2)どの赤も隣り合わないとき、どの黒も隣り合わない条件付き確率を求めよ.

2023東大過去問
この動画を見る 

福田の数学〜最大値を求める問題の3連発!〜北里大学2023年医学部第1問(2)〜領域における最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
点$(x,y)$は$x^2+(y-1)^2 \leqq 1$の表す領域を動くとする。

$\displaystyle \frac{x-y-1}{x+y-3}$の最大値は?

$x(y-1)$の最大値は?

$\displaystyle \frac{x^2-6x+9}{y^2-2y-3}$の最大値は?

2023北里大学医過去問
この動画を見る 

数学「大学入試良問集」【10−4 α+βとαβの軌跡】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
点$P(\alpha,\beta)$が$\alpha^2+\beta^2+\alpha\beta \lt 1$をみたして動くとき、点$Q(\alpha+\beta,\alpha\beta)$の動く範囲を図示せよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第6問〜期待値から経営戦略を立てる

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$A社はB氏を報酬wで雇っている(wは正の実数)。A社の売り上げはB氏の努力水準に
依存しており、B氏の努力水準が低いとA社の売り上げは200だが、B氏の努力水準が
高い場合、A社の売り上げは70%の確率で500となり、30%の確率で200のままとなる。
そして、このことはB氏も知っている。ただし、B氏は努力水準を高める際に17.5の
苦痛を感じる。そのため、報酬wの下で努力水準を高めると、B氏の実質的な報酬は
w-17.5となってしまう。B氏は完全にテレワークをしており、B氏の努力水準を
A社が直接知ることはできないし、B氏が努力水準を高めるように強制することも
できない。すると$w \gt w-17.5$であることから、B氏は努力水準を高めないことが
合理的な行動となる。
以下では、不確実性下の意思決定を扱っているが(1),(2),(3)のいずれにおいても、
A社、B氏共に期待値の大小のみに関心があるものと仮定して解答すること。

(1)いま、A社は売上が500になったあときにはB氏の報酬を$w_1$に引き上げ、200のとき
には$w_0$に据え置くアイデアを思いついた。B氏が努力水準を高めるには、
$w_1 \geqq w_0+\boxed{\ \ アイウ\ \ }.\boxed{\ \ エオ\ \ }$である必要がある。

次に、B氏は、A社をやめても他の会社に報酬100で雇われることが可能であるとする。
(2)A社の利潤を売上からB氏への報酬を引いた残りだと単純化すると、$w_1$と$w_0$を適切に
定めることにより、B氏にA社をやめさせず、かつ努力水準を高めさせるためには、
A社の利潤の期待値を$\boxed{\ \ カキク\ \ }.\boxed{\ \ ケコ\ \ }$以下とする必要がある。
また、A社の利潤の期待値が最大化された時、$w_1:w_0=5:4$を満たす$w_0$の値は
$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$

以下では、B氏の$w_0$の値をこの$w_0$の値をこの$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$とする。
(3)実は、B氏の関心は報酬wそのものではなく、そこから得られる満足と解釈される
$10\sqrt w$であることが分かった。そのため、努力水準を高める際の苦痛17.5もこの値
から差し引かれ、努力水準を高めたときのB氏の満足は$10\sqrt w-17.5$となる。
B氏は(実質的な)報酬を最大化する人ではなく、満足を最大化する人だとしたとき、
B氏にA社をやめさせず、かつ努力水準を高めさせえるためには、$w_1 \geqq \boxed{\ \ タチツ\ \ }.\boxed{\ \ テト\ \ }$

2021慶應義塾大学総合政策学部過去問
この動画を見る 
PAGE TOP