福田の数学〜千葉大学2022年理系第9問〜関数が常に増加する条件 - 質問解決D.B.(データベース)

福田の数学〜千葉大学2022年理系第9問〜関数が常に増加する条件

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{8}}\ rを正の実数とし、関数\hspace{110pt}\\
\\
f(x)=x+\frac{r}{\sqrt{1+\sin^2x}}\\
\\
を考える。\\
(1)r=1のとき、f(x)は常に増加することを示せ。\\
(2)次の条件を満たす最大の正の実数cを求めよ。\\
\\
条件:0 \lt r \lt cのときはf(x)が常に増加する。
\end{eqnarray}
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{8}}\ rを正の実数とし、関数\hspace{110pt}\\
\\
f(x)=x+\frac{r}{\sqrt{1+\sin^2x}}\\
\\
を考える。\\
(1)r=1のとき、f(x)は常に増加することを示せ。\\
(2)次の条件を満たす最大の正の実数cを求めよ。\\
\\
条件:0 \lt r \lt cのときはf(x)が常に増加する。
\end{eqnarray}
投稿日:2022.05.21

<関連動画>

福田のわかった数学〜高校3年生理系090〜グラフを描こう(12)無理関数、凹凸、漸近線

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう。(12)\hspace{120pt}\\
y=\sqrt[3]{x^3-x^2} のグラフを描け。ただし凹凸、漸近線も調べよ。
\end{eqnarray}
この動画を見る 

【数Ⅲ】微分法:伝説の静岡大学のグラフの問題を紹介!!どんなグラフになるか予想しよう!(概要欄にネタバレあり)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#静岡大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x),g(x)を f(x)=x⁴-x²+6(|x|≦1),12/|x|+1(|x|>1) g(x)=1/2cos2πx+7/2(|x|≦2) で定義する。このとき次の問いに答えよ。 
f(x),g(x)の増減を調べ、2曲線C₁:y=f(x),C₂:y=g(x)のグラフの概形を同じ座標平面上にかけ。
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。
この動画を見る 

福田のわかった数学〜高校3年生理系108〜変化率(3)水の問題(2)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 変化率(3) 水の問題(2)\\
右図(※動画参照)のような直円錐の容器に水が満たされている。下側から2cm^3/秒\\
の割合で水が流出する。水面の高さが8cmになった瞬間の水面の下降する\\
速度と水面の面積が減少する速度を求めよ。\\ 
\end{eqnarray}
この動画を見る 

【数Ⅲ】微分法:整式の次数に着目して解く問題

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
f(x)は0でない整式で次を満たすとする。
・xf''(x) + (1 - x)f'(x) + 3f(x) = 0
・f(0) = 1
(1)f(x)の次数を求めよ
(2)f(x)を求めよ
この動画を見る 
PAGE TOP