福田の1.5倍速演習〜合格する重要問題007〜大阪大学2015年文系数学第1問〜不等式の証明 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題007〜大阪大学2015年文系数学第1問〜不等式の証明

問題文全文(内容文):
実数x,yが$|x| \leqq 1$と$|y| \leqq 1$を満たすとき、不等式
$0 \leqq x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2} \leqq 1$
が成り立つことを示せ。

2015大阪大学文系過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#三角関数#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数x,yが$|x| \leqq 1$と$|y| \leqq 1$を満たすとき、不等式
$0 \leqq x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2} \leqq 1$
が成り立つことを示せ。

2015大阪大学文系過去問
投稿日:2022.11.22

<関連動画>

三角比の90°以上の有名角 #Shorts

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の90°以上の有名角に関して解説していきます.
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(3)〜四面体と四面体の共通部分の切り口の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)座標空間内の4点(2,0,0),\ (-1,\sqrt3,0),\ (-1,-\sqrt3,0),\ (0,0,2)を頂点と\\
する四面体をP、4点(-2,0,1),\ (1,-\sqrt3,1),\ (1,\sqrt3,1),\ (0,0,-1)を頂点\\
とする四面体をQとする。RをPとQの共通部分とする。Rを平面z=\frac{1}{3}で\\
切ったときの切り口の面積を求めよ。\hspace{145pt}
\end{eqnarray}

2022早稲田大学教育学部過去問
この動画を見る 

福田のわかった数学〜高校1年生052〜図形の計量(3)台形の対角線のなす角

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 図形の計量(3)\\
右のような台形ABCDがある。(※動画参照)\\
(1)面積を求めよ。\\
(2)AC,BDを求めよ。\\
(3)\sin\thetaを求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第3問〜データの分析と条件付き確率

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#場合の数と確率#データの分析#データの分析#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ xの関数が印刷されているカード25枚が1つの袋に入っている。\\
その内訳は、11枚に1-3x、9枚に1-2x、4枚に1-2x+2x^2、1枚に1-3x+5x^2である。\\
この袋からカードを1枚取り出し、印刷されている関数を記録してから袋に戻すことを\\
100回繰り返したところ、記録の内訳は1-3xが46回、1-2xが35回、1-2x+2x^2が15回、\\
1-3x+5x^2が4回であった。\\
(1)記録された関数の実数xにおける値をa_1,a_2,\ldots,a_{100}とおく。\\
a_1,a_2,\ldots,a_{100}の平均値は、xの値を定めるとそれに対応して値が定まるので、\\
xの関数である。この関数はx=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ のとき最小となり、その値は-\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オ\ \ }}\ である。\\
(2)記録された関数のx=0からx=1までの定積分をb_1,b_2,\ldots,b_{100}とおく。\\
b_1,b_2,\ldots,b_{100}の平均値は-\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}\ であり、分散は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}\ である。\\
また、記録された関数のx=1における値をc_1,c_2,\ldots,c_{100}とおくとき、\\
100個のデータの組(b_1,c_1),(b_2,c_2),\ldots,(b_{100},c_{100})の共分散は\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}\ である。\\
(3)カードがすべて袋に入った状態から1枚取り出したとき、印刷されている\\
関数のx=1における値が負である条件の下で、その関数の0から1までの定積分\\
が負である条件つき確率は\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ である。
\end{eqnarray}

2022慶應義塾大学経済学部過去問
この動画を見る 

三角比の有名角30°45°60° #Shorts

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の有名角30°45°60°に関して解説していきます.
この動画を見る 
PAGE TOP