問題文全文(内容文):
$z \neq 1,z^7-1=0$
証明せよ。
(1)
$w=z+\displaystyle \frac{1}{z}$とすると、$w^3+w^2-2w-1=0$
(2)
$a=\cos \displaystyle \frac{2}{7}\pi$とすると、$8a^3+4a^2-4a-1=0$
出典:2005年福島大学 過去問
$z \neq 1,z^7-1=0$
証明せよ。
(1)
$w=z+\displaystyle \frac{1}{z}$とすると、$w^3+w^2-2w-1=0$
(2)
$a=\cos \displaystyle \frac{2}{7}\pi$とすると、$8a^3+4a^2-4a-1=0$
出典:2005年福島大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z \neq 1,z^7-1=0$
証明せよ。
(1)
$w=z+\displaystyle \frac{1}{z}$とすると、$w^3+w^2-2w-1=0$
(2)
$a=\cos \displaystyle \frac{2}{7}\pi$とすると、$8a^3+4a^2-4a-1=0$
出典:2005年福島大学 過去問
$z \neq 1,z^7-1=0$
証明せよ。
(1)
$w=z+\displaystyle \frac{1}{z}$とすると、$w^3+w^2-2w-1=0$
(2)
$a=\cos \displaystyle \frac{2}{7}\pi$とすると、$8a^3+4a^2-4a-1=0$
出典:2005年福島大学 過去問
投稿日:2019.03.15