問題文全文(内容文):
$\boxed{5}$
曲線$C:y=\cos x\left(0\leqq x \leqq \dfrac{\pi}{2}\right)$上の点
$(\theta,\cos\theta)$における接線を$l$とする。
(1)$\theta=\dfrac{\pi}{4}$のとき、接線$l$と
$x$軸との交点の座標は$\left(\dfrac{\pi+\boxed{二}}{\boxed{ヌ}},0\right)$である。
(2)曲線$C$と接線$l$、および$x$軸によって
囲まれた部分の面積が$1$であるとき、
$\sin\theta=\boxed{ネ}-\sqrt{\boxed{ノ}}$である。
$2025$年早稲田大学人間科学部過去問題
$\boxed{5}$
曲線$C:y=\cos x\left(0\leqq x \leqq \dfrac{\pi}{2}\right)$上の点
$(\theta,\cos\theta)$における接線を$l$とする。
(1)$\theta=\dfrac{\pi}{4}$のとき、接線$l$と
$x$軸との交点の座標は$\left(\dfrac{\pi+\boxed{二}}{\boxed{ヌ}},0\right)$である。
(2)曲線$C$と接線$l$、および$x$軸によって
囲まれた部分の面積が$1$であるとき、
$\sin\theta=\boxed{ネ}-\sqrt{\boxed{ノ}}$である。
$2025$年早稲田大学人間科学部過去問題
単元:
#大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
曲線$C:y=\cos x\left(0\leqq x \leqq \dfrac{\pi}{2}\right)$上の点
$(\theta,\cos\theta)$における接線を$l$とする。
(1)$\theta=\dfrac{\pi}{4}$のとき、接線$l$と
$x$軸との交点の座標は$\left(\dfrac{\pi+\boxed{二}}{\boxed{ヌ}},0\right)$である。
(2)曲線$C$と接線$l$、および$x$軸によって
囲まれた部分の面積が$1$であるとき、
$\sin\theta=\boxed{ネ}-\sqrt{\boxed{ノ}}$である。
$2025$年早稲田大学人間科学部過去問題
$\boxed{5}$
曲線$C:y=\cos x\left(0\leqq x \leqq \dfrac{\pi}{2}\right)$上の点
$(\theta,\cos\theta)$における接線を$l$とする。
(1)$\theta=\dfrac{\pi}{4}$のとき、接線$l$と
$x$軸との交点の座標は$\left(\dfrac{\pi+\boxed{二}}{\boxed{ヌ}},0\right)$である。
(2)曲線$C$と接線$l$、および$x$軸によって
囲まれた部分の面積が$1$であるとき、
$\sin\theta=\boxed{ネ}-\sqrt{\boxed{ノ}}$である。
$2025$年早稲田大学人間科学部過去問題
投稿日:2025.07.09





