福田の数学〜早稲田大学2025人間科学部第5問〜接線と面積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2025人間科学部第5問〜接線と面積

問題文全文(内容文):

$\boxed{5}$

曲線$C:y=\cos x\left(0\leqq x \leqq \dfrac{\pi}{2}\right)$上の点

$(\theta,\cos\theta)$における接線を$l$とする。

(1)$\theta=\dfrac{\pi}{4}$のとき、接線$l$と

$x$軸との交点の座標は$\left(\dfrac{\pi+\boxed{二}}{\boxed{ヌ}},0\right)$である。

(2)曲線$C$と接線$l$、および$x$軸によって

囲まれた部分の面積が$1$であるとき、

$\sin\theta=\boxed{ネ}-\sqrt{\boxed{ノ}}$である。

$2025$年早稲田大学人間科学部過去問題
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

曲線$C:y=\cos x\left(0\leqq x \leqq \dfrac{\pi}{2}\right)$上の点

$(\theta,\cos\theta)$における接線を$l$とする。

(1)$\theta=\dfrac{\pi}{4}$のとき、接線$l$と

$x$軸との交点の座標は$\left(\dfrac{\pi+\boxed{二}}{\boxed{ヌ}},0\right)$である。

(2)曲線$C$と接線$l$、および$x$軸によって

囲まれた部分の面積が$1$であるとき、

$\sin\theta=\boxed{ネ}-\sqrt{\boxed{ノ}}$である。

$2025$年早稲田大学人間科学部過去問題
投稿日:2025.07.09

<関連動画>

高専数学 微積II #3 2次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\sqrt[3]{1-x}$の$x=0$における2次近似式を用いて,
$\sqrt[3]{0.8}$の近似値を小数第三位まで求めよ.
この動画を見る 

福田の数学〜上智大学2024TEAP利用型理系第1問(3)〜対数不等式を満たす最小の整数

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(i) $\log_{10} 2=0.301$とする。このとき、$\log_{10} 1.28=0.\boxed{ウ}$である。
(ii)$n$は$2$以上の整数とする。$n^{100}<1.28^n$となる最小の$n$について、$2^a \leqq n < 2^{a+1}$となる整数$a$は$\boxed{エ}$
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(4)〜定積分で表された関数と変曲点

アイキャッチ画像
単元: #微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)連続関数$f(x)$は区間$x \geqq 0$で正の値をとり、区間$x \gt 0$で微分可能
かつ$f'(x)\neq 0$であるとする。さらに、実数の定数aと関数$f(x)$が
$\int_0^x3t^2f(t)dt-(x^3+3)f(x)+\log f(x)=a (x \geqq 0)$
を満たすとする。このとき
$a=-\boxed{\ \ ヌ\ \ }-\log\boxed{\ \ ネ\ \ }$
である。また、曲線$y=f(x)\ (x \gt 0)$の変曲点のx座標をpとすると
$p^3=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。ただし、$\log x$は$x$の自然対数である。
この動画を見る 

福田のわかった数学〜高校3年生理系103〜絶対不等式(1)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(1)
$a^x \geqq x$
が任意の正の実数xに対して成り立つような
正の定数aの値の範囲を求めよ。  
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第1問(1)〜1次の近似式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#学校別大学入試過去問解説(数学)#速度と近似式#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 (1) $\cos 61°$の近似値を求めたい。$y=\cos x$ の1次の近似式を用いて計算し、
小数第3位を四捨五入すると $\cos 61° ≒ 0. [ア] $を得る。
ただし、$\pi= 3.14 √3=1.73 $として用いてよい。

2022上智大学理系過去問
この動画を見る 
PAGE TOP