福田の数学〜上智大学2023年TEAP利用型文系第4問(2)〜割り算の余りと等差数列 - 質問解決D.B.(データベース)

福田の数学〜上智大学2023年TEAP利用型文系第4問(2)〜割り算の余りと等差数列

問題文全文(内容文):
$\Large{\boxed{3}}$ (2)2つの集合
A=$\left\{n|nは3で割ると2余る自然数である\right\}$
B=$\left\{n|nは5で割ると3余る自然数である\right\}$
を考える。A$\cap$Bの要素を小さい順に並べて作った数列の第$k$項は
$\boxed{\ \ ヨ\ \ }k$+$\boxed{\ \ ラ\ \ }$
である。また、A$\cup$Bの要素を小さい順に並べて作った数列の第100項は
$\boxed{\ \ リ\ \ }$
である。
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ (2)2つの集合
A=$\left\{n|nは3で割ると2余る自然数である\right\}$
B=$\left\{n|nは5で割ると3余る自然数である\right\}$
を考える。A$\cap$Bの要素を小さい順に並べて作った数列の第$k$項は
$\boxed{\ \ ヨ\ \ }k$+$\boxed{\ \ ラ\ \ }$
である。また、A$\cup$Bの要素を小さい順に並べて作った数列の第100項は
$\boxed{\ \ リ\ \ }$
である。
投稿日:2023.09.11

<関連動画>

一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回投げ、$k$回目の目を$a_k$。
$S_n=\displaystyle \sum_{k=1}^n 10^{n-k}a_k$

次の確率を求めよ。
$S_n$が
(1)4の倍数
(2)6の倍数
(3)7の倍数

出典:2013年一橋大学 過去問
この動画を見る 

一橋大 漸化式&対数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
数列$a_n,a_1=5,a_{n+1}=2,a_n+3^n$がある.

(1)$a_n$を求めよ.
(2)$a_n\lt 10^{10}$を満たす最大の$n$を求めよ.
$\log_{10}2=0.3010,\log_{10}3=0.4771$

1998一橋大過去問
この動画を見る 

東大 漸化式 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^{n+1}$を$x^2-x-1$で割った余りを$a_n x+b_n$とする.

(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
a_{n+1}=a_n+b_n \\
b_{n+1}=a_n
\end{array}
\right.
\end{eqnarray}$ を示せ.

(2)$a_n$と$b_n$は自然数で,互いに素であることを示せ.

東大過去問
この動画を見る 

漸化式 群馬大(医)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=0(n\geqq 2)$,$a_n-\dfrac{2S_n^2}{2S_n-1}$であるとする.
一般項$a_n$を求めよ.
$S_n=\displaystyle \sum_{k=1}^n a_k$

1979群馬大(医)過去問
この動画を見る 

【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮裏技集 紹介動画です(指数・対数、微分積分、数列、ベクトル)
この動画を見る 
PAGE TOP