正負を答えよ 大垣日大(改)(岐阜) - 質問解決D.B.(データベース)

正負を答えよ  大垣日大(改)(岐阜)

問題文全文(内容文):
a>0 , b<0 , |a| < |b|のとき式の正負答えよ
(1)$a+b$
(2)$b^2-a^2$
(3)$\sqrt a - \sqrt{-b}$

大垣日本大学高等学校
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a>0 , b<0 , |a| < |b|のとき式の正負答えよ
(1)$a+b$
(2)$b^2-a^2$
(3)$\sqrt a - \sqrt{-b}$

大垣日本大学高等学校
投稿日:2023.08.08

<関連動画>

#関西学院大学2011#方程式_69

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$(x+1)(x-2)(x+3)(x-4)=-24$を解け.

2011関西学院大学過去問題
この動画を見る 

因数分解せよ  北京大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x \sqrt x - 2x + 1$

北京大学
この動画を見る 

福田のわかった数学〜高校1年生050〜図形の計量(1)内接四角形の面積

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(1)
$AB=3,\ BC=5,\ CD=5,\ DA=6$である
円に内接する四角形ABCDにおいて、
ACの長さ、四角形ABCDの面積Sを求めよ。
この動画を見る 

共通テスト数学1A_第1問を簡単に解く方法教えます

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
[1]$c$を正の整数とする。$x$の2次方程式
  $2x^2+(4c-3)x+2c^2-c-11=0$ について考える。

(1)$c=1$のとき、①の左辺を因数分解すると
  $([ア]x+[イ])(x-[ウ])$
  であるから、①の解は
  $x=-\displaystyle \frac{[イ]}{[ア]},[ウ]$である。

(2)$c=2$のとき、①の解は
  $x=\displaystyle \frac{-[エ] \pm \sqrt{ [オカ] }}{[キ]}$
  であり、大きい方の解を$a$とすると
  $\displaystyle \frac{5}{a}=\displaystyle \frac{[ク] + \sqrt{ [ケコ] }}{[サ]}$
  である。また、$m<\displaystyle \frac{5}{a}<m+1$を満たす整数は[シ]である。

(3)太郎さんと花子さんは、①の解について考察している。
-----------------
太郎:①の解は$c$の値によって、ともに有理数である場合もあれば、
   ともに無理数である場合もあるね。
   $c$がどのような値のときに、解は有理数になるのかな。

花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。
-----------------
①の解が異なる二つの有理数であるような正の整数$c$の個数は[ス]個である。
この動画を見る 

【高校数学】  数Ⅰ-92  三角形となる条件

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎3辺の長さが、5,3,xである三角形が鈍角三角形となるように、xの範囲を定めよう。
この動画を見る 
PAGE TOP