方程式 - 質問解決D.B.(データベース)

方程式

問題文全文(内容文):
これを解け.$x$を実数とする.

$\sqrt{x^2+3x+2}-\sqrt{x^2+2x+5}=3-x$
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$x$を実数とする.

$\sqrt{x^2+3x+2}-\sqrt{x^2+2x+5}=3-x$
投稿日:2021.03.07

<関連動画>

福田の数学〜北里大学2020年医学部第1問(1)〜虚数係数の3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)$p,q$を実数の定数、$i$を虚数単位とする。$x$の方程式
$x^3-(p-i)x^2+(q-pi)x-2p+\displaystyle\frac{3p}{2}i=0$
が$2+i$を解にもつとする。このとき、$p=\boxed{\ \ ア\ \ }$,$q=\boxed{\ \ イ\ \ }$である。また、この方程式の$2+i$以外の解を$\alpha$,$\beta$(ただし、|$\alpha$| $\lt$ |$\beta$|)とおくと$\left(\displaystyle\frac{\beta-i}{\alpha}\right)^7=\boxed{\ \ ウ \ \ }$である。

2020北里大学医学部過去問
この動画を見る 

福田のおもしろ数学456〜5変数の連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

実数$x,y,z,w,t$に対して次の連立方程式を解け。

$\begin{eqnarray}
\left\{
\begin{array}{l}
\hspace{ 2pt } x^5=y+y^5= \cdots ① \\
\hspace{ 2pt }y^5=z+z^5=\cdots ② \\\
\hspace{ 0.1pt }z^5=w+w^5=\cdots ③ \\\
\hspace{ 0.2pt }w^5=t+t^5=\cdots ④ \\\
\hspace{ 1pt }t^5=x+x^5= \cdots ⑤
\end{array}
\right.
\end{eqnarray}$
    
この動画を見る 

【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問5_式と証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。
この動画を見る 

指数方程式 (数II)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$16^x-9 \times 4^x +8 = 0$を解け
この動画を見る 

【高校数学】漸化式で特性方程式を使う理由 3-18.5【数学B】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【高校数学】漸化式で特性方程式を使う理由を解説していきます。
この動画を見る 
PAGE TOP