福田の数学〜東京大学2025理系第1問〜媒介変数表示で表された曲線の面積と曲線の長さ - 質問解決D.B.(データベース)

福田の数学〜東京大学2025理系第1問〜媒介変数表示で表された曲線の面積と曲線の長さ

問題文全文(内容文):
$\boxed{1}$

座標平面上の点

$A(0,0),B(0,1),C(1,1),D(1,0)$を考える。

実数$0\lt t \lt 1$に対して、

線分$AB,BC,CD$を$t:(1-t)$に内分する点を

それぞれ$S_t,T_t$とする。

さらに、線分$S_tT_t$を$t:(1-t)$に内分する点を

$U_t$とする。

また、点$A$を$U_0$、点$D$を$U_1$とする。

(1)点$U_t$の座標を求めよ。

(2)$t$が$0\leqq t\leqq 1$の範囲を動くときに

点$U_t$描く曲線と、

線分$AD$で囲まれた部分の面積を求めよ。

(3)$a$を$0\lt a\lt 1$を満たす実数とする。

$t$が$0\leqq t \leqq a$の範囲を動くときに点$U_t$が

描く曲線の長さを、$a$の多項式の形で求めよ。

図は動画内参照

$2025$年東京大学理系過去問題
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

座標平面上の点

$A(0,0),B(0,1),C(1,1),D(1,0)$を考える。

実数$0\lt t \lt 1$に対して、

線分$AB,BC,CD$を$t:(1-t)$に内分する点を

それぞれ$S_t,T_t$とする。

さらに、線分$S_tT_t$を$t:(1-t)$に内分する点を

$U_t$とする。

また、点$A$を$U_0$、点$D$を$U_1$とする。

(1)点$U_t$の座標を求めよ。

(2)$t$が$0\leqq t\leqq 1$の範囲を動くときに

点$U_t$描く曲線と、

線分$AD$で囲まれた部分の面積を求めよ。

(3)$a$を$0\lt a\lt 1$を満たす実数とする。

$t$が$0\leqq t \leqq a$の範囲を動くときに点$U_t$が

描く曲線の長さを、$a$の多項式の形で求めよ。

図は動画内参照

$2025$年東京大学理系過去問題
投稿日:2025.02.25

<関連動画>

福田の数学〜上智大学2022年TEAP理系型第4問〜媒介変数で表された極方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え
る。平面上を運動する点Pの極座標$(r,\ θ)$が、時刻$t \geqq 0$の関数として、
$r=1+t,\ \ \ θ=\log(1+t)$
で与えられるとする。時刻$t=0$にPが出発してから初めてy軸上に到着するまで
にPが描く軌跡をCとする。
(1)$\ t \gt 0$において、Pが初めてy軸上に到着するときのtの値を求めよ。
(2)C上の点のx座標の最大値を求めよ。
(3)Cの長さを求めよ。
(4)Cを座標平面上に図示せよ。
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2022上智大学理系過去問
この動画を見る 

福田のおもしろ数学152〜2つの図形の面積を同時に2等分する直線が存在する証明

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数C
指導講師: 福田次郎
問題文全文(内容文):
次の2つの図形(※動画参照)の面積を同時に2等分する直線が存在することを証明せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系086〜グラフを描こう(8)媒介変数表示のグラフ

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(8)

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^3-3t^2\\
y=t^2-2t
\end{array}
\right.
\end{eqnarray}$
のグラフを描け。
ただし凹凸は調べなくてよい。
この動画を見る 

高専数学 微積I #234(1)(2) 極座標表示の曲線の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
(1)曲線$r=\theta^2\left(0\leqq \theta \leqq \dfrac{\theta}{2}\right)$と
半直線$\theta=\dfrac{\theta}{2}$で囲まれた図形の面積を求めよ.

(2)曲線$r=\cos\theta+2(0\leqq \theta \leqq 2\pi)$で囲まれた
図形の面積を求めよ.
この動画を見る 

東大 座標上の鋭角三角形

アイキャッチ画像
単元: #数A#図形の性質#平面上の曲線#三角形の辺の比(内分・外分・二等分線)#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は実数であり,$b\neq 0$である.
$O(0,0).P(1,0),Q(a,b)$

(1)$\triangle OPQ$が鋭角三角形になる$a,b$の条件を不等式で表せ.
(2)$m,n$整数,$a,b$は(1)の条件を満たすとき,$(m+na)^2-(m+na)+n^2b^2 \geqq 0$を示せ.

1998東大過去問
この動画を見る 
PAGE TOP