問題文全文(内容文):
$0^\circ \leq \theta \leq 180^\circ$とする。
次の不等式を満たす$\theta$ の値の範囲を求めよ。
$\sin\theta > \dfrac{1}{\sqrt{2}}$
$\sin\theta \leq \dfrac{1}{2}$
$\cos\theta \leq -\dfrac{\sqrt{3}}{2}$
$\cos\theta < -\dfrac{1}{\sqrt{2}}$
$0 < \tan\theta \leq 1$
$\tan\theta \geq \sqrt{3}$
$1 < 2\sin\theta \leq \sqrt{3}$
$1 \leq -2\cos\theta < \sqrt{3}$
$-1 < \sqrt{3}\tan\theta < 3$
$0^\circ \leq \theta \leq 180^\circ$とする。
次の不等式を満たす$\theta$ の値の範囲を求めよ。
$\sin\theta > \dfrac{1}{\sqrt{2}}$
$\sin\theta \leq \dfrac{1}{2}$
$\cos\theta \leq -\dfrac{\sqrt{3}}{2}$
$\cos\theta < -\dfrac{1}{\sqrt{2}}$
$0 < \tan\theta \leq 1$
$\tan\theta \geq \sqrt{3}$
$1 < 2\sin\theta \leq \sqrt{3}$
$1 \leq -2\cos\theta < \sqrt{3}$
$-1 < \sqrt{3}\tan\theta < 3$
チャプター:
0:00 三角不等式
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$0^\circ \leq \theta \leq 180^\circ$とする。
次の不等式を満たす$\theta$ の値の範囲を求めよ。
$\sin\theta > \dfrac{1}{\sqrt{2}}$
$\sin\theta \leq \dfrac{1}{2}$
$\cos\theta \leq -\dfrac{\sqrt{3}}{2}$
$\cos\theta < -\dfrac{1}{\sqrt{2}}$
$0 < \tan\theta \leq 1$
$\tan\theta \geq \sqrt{3}$
$1 < 2\sin\theta \leq \sqrt{3}$
$1 \leq -2\cos\theta < \sqrt{3}$
$-1 < \sqrt{3}\tan\theta < 3$
$0^\circ \leq \theta \leq 180^\circ$とする。
次の不等式を満たす$\theta$ の値の範囲を求めよ。
$\sin\theta > \dfrac{1}{\sqrt{2}}$
$\sin\theta \leq \dfrac{1}{2}$
$\cos\theta \leq -\dfrac{\sqrt{3}}{2}$
$\cos\theta < -\dfrac{1}{\sqrt{2}}$
$0 < \tan\theta \leq 1$
$\tan\theta \geq \sqrt{3}$
$1 < 2\sin\theta \leq \sqrt{3}$
$1 \leq -2\cos\theta < \sqrt{3}$
$-1 < \sqrt{3}\tan\theta < 3$
投稿日:2025.10.04





