等式の変形 西大和学園 - 質問解決D.B.(データベース)

等式の変形 西大和学園

問題文全文(内容文):
aについて解け
$\frac{1}{a}+\frac{2}{b} = \frac{1}{ca}$

2022西大和学園高等学校
単元: #数学(中学生)#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
aについて解け
$\frac{1}{a}+\frac{2}{b} = \frac{1}{ca}$

2022西大和学園高等学校
投稿日:2022.06.05

<関連動画>

解けるようにできた4次方程式 要工夫

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2+\dfrac{25x^2}{(x+5)^2}=24$
これを解け.
この動画を見る 

「二次方程式の判別式(解の個数)」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次方程式$x^2+(2k-1)x+k^2+1=0$について以下の問いに答えよ。
(1)実数解をもつような$k$の値の範囲を求めよ。
(2)重解をもつような$k$の値と、重解を求めよ。

2次方程式$x^2+(2k-1)x+k^2+1=0$について以下の問いに答えよ。
(1)実数解をもつような$k$の値の範囲を求めよ。
(2)重解をもつような$k$の値と、重解を求めよ。

以下の問いに答えよ。
(1)2次方程式$y=2kx-k+2$が$x$軸と接するような定数$k$の値と接点を求めよ。
(2)2次方程式$y=x^2+kx-2k+3$が$x$軸と異なる2つの共有点をもつような定数$k$の値の範囲を求めよ。
(3)2次関数$y=2x^2+1$と直線$y=-2x+3k$が共有点をもつような定数$k$の値の範囲を求めよ。
(4)2次関数$y=x^2+4x+2k$のグラフが$x$軸から切り取る線分の長さが$3\sqrt{ 2 }$であるとき、定数$k$の値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第3問〜データの分析・平均・標準偏差・共分散・相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
ある病院の入院患者10人に対して、病院内で作っている粉薬の評価を調査した。
調査の評価項目は、粉薬の「飲みやすさ」と、「飲みやすさ」の要因と考えられる
「匂い」「舌触り」、「味」の計4項目についてである。
10人の患者が、評価項目について最も満足な場合は10、最も不安な場合は1として、
1以上10以下の整数で評価した。表内の平均値、分散、共分散の数値は四捨五入
されていない正確な値である。(※動画参照)
「飲みやすさ」との共分散は、「飲みやすさ」に対する評価の偏差と、各評価項目
に対する評価の偏差の積の平均値である。
(1)$(\textrm{i})$患者番号5の「舌触り」に対する(t)の値は$\boxed{\ \ ニ\ \ }$である。
$(\textrm{ii})$「飲みやすさ」に対する評価の標準偏差の値は$\boxed{\ \ ヌ\ \ }$である。
(2)「飲みやすさ」に対する評価と「舌触り」に対する評価の相関係数の値を
分数で表すと$\boxed{\ \ ネ\ \ }$である。
(3)「飲みやすさ」と「匂い」、「飲みやすさ」と「舌触り」、「飲みやすさ」と「味」
の相関係数の値をそれぞれ$r_1,r_2,r_3$と表し、「匂い」、「舌触り」、「味」の評価の
平均値をそれぞれ$a_1,a_2,a_3$と表す。$a_i,r_i (1 \leqq i \leqq 3)$に対し、$\bar{ r }$と$\bar{ a }$は以下の式で定める。
$\bar{ r }=\frac{r_1+r_2+r_3}{3},\bar{ a }=\frac{a_1+a_2+a_3}{3}$
「飲みやすさ」との相関係数の値が最も1に近い評価項目は$\boxed{\ \ ノ\ \ }$である。
また、「$r_i-\bar{ r } \lt0$かつ$a_i-\bar{ a } \gt0$」を満たす評価項目をすべて挙げると$\boxed{\ \ ノ\ \ }$である。

(4)「匂い」、「舌触り」、「味」のうち、$\boxed{\ \ ハ\ \ }$にあてはまらない評価項目
(以降、この評価項目をXと表す)に関して改良を行った。改良後の紛薬に対して、同じ10人の
患者がXと「飲みやすさ」について再び評価した。
改良後の調査結果では、Xの評価は10人全員の評価が改良前に比べてそれぞれ1上がっていた。
改良後のXの評価の平均値を求めると$\boxed{\ \ ヒ\ \ }$であり、標準偏差は改良前調査における値と
比べて$\boxed{\ \ フ\ \ }$。また、「飲みやすさ」の評価については、改良前の調査において評価が
1以上4以下の場合は2上がり、5以上9以下の場合は1上がり、10の場合は評価が変わらず
10であった。よって改良後の「飲みやすさ」に対する評価の平均値を求めると$\boxed{\ \ ヘ\ \ }$であり、
標準偏差は改良前の調査における値と比べて$\boxed{\ \ ホ\ \ }$。

2022慶應義塾大学薬学部過去問
この動画を見る 

tan1°✖️ tan2°✖️tan3°✖️・・・✖️tan89°

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$tan1^ \circ \times tan2^ \circ \times tan3^ \circ \times \cdots tan88^ \circ \times tan89^ \circ$
この動画を見る 

正八角形と正方形

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle C$=?
*図は動画内参照
この動画を見る 
PAGE TOP