整数の性質、これ解ける? - 質問解決D.B.(データベース)

整数の性質、これ解ける?

問題文全文(内容文):
正の整数$x,y(x \gt y)$と、$n \gt 1$である任意の素数$n$が$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}=\displaystyle \frac{1}{n}$満たすとき、$x$が偶取であることを示せ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
正の整数$x,y(x \gt y)$と、$n \gt 1$である任意の素数$n$が$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}=\displaystyle \frac{1}{n}$満たすとき、$x$が偶取であることを示せ。
投稿日:2022.05.19

<関連動画>

千葉大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pは奇数の素数である.
$N=(P+1)(P+3)(P+5)$

(1)Nは48の倍数であることを示せ.
(2)Nが144の倍数となるPを小さい順に5つ答えよ.

千葉大過去問
この動画を見る 

合同式の基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
${3^{3}}^{2023}$を11で割ったあまりは?
この動画を見る 

素数を扱え!整数問題【数学 入試問題】【千葉大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$p$は奇数である素数とし、$N=(p+1)(p+3)(p+5)$とおく。
(1)$N$は$48$の倍数であることを示せ。
(2)$N$は$144$の倍数になるような$p$の値を小さい順に$3$つ求めよ。

千葉大過去問
この動画を見る 

整数問題 日比谷高校

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{2310}{n}$が素数となる自然数nはいくつあるか。
日比谷高等学校
この動画を見る 

息抜き 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2020^{2020}$を$2019^2$で割った余りを求めよ
この動画を見る 
PAGE TOP