全ての角が等しい六角形は正六角形? - 質問解決D.B.(データベース)

全ての角が等しい六角形は正六角形?

問題文全文(内容文):
○か✖か?
・3つの角がすべて等しい三角形は正三角形
・6つの角がすべて等しい六角形は正六角形
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
○か✖か?
・3つの角がすべて等しい三角形は正三角形
・6つの角がすべて等しい六角形は正六角形
投稿日:2021.11.25

<関連動画>

ルートの中のルートの中にルートがある。2024中大杉並

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{\sqrt{90-\sqrt{81}}+\sqrt{240+\sqrt{256}}}$
中央大学杉並高等学校2024
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

正方形と2つの正三角形の面積の和 2通りで解説

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2つの正三角形と正方形
全体の面積=?

*図は動画内参照
この動画を見る 

解き方いろいろ 面積比 筑波大附属 訂正はコメント欄に

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$△ADE×12=△ABC$
$x=?$
筑波大学付属高等学校
この動画を見る 

【数学】イッパツ理解!データの分析!深く考えずに公式だけ覚えよう!【篠原好】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
イッパツ理解!深く考えずに公式だけ覚えよう!
「数学のデータの分析」についてお話しています。
この動画を見る 
PAGE TOP