【数Ⅱ】【式と証明】展開式の係数 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【式と証明】展開式の係数 ※問題文は概要欄

問題文全文(内容文):
次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (2x²-1)⁶ [x⁶]  (2)(2x³-3x)⁵ [x⁹]

次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (a+b+c)⁶ [ab²c³]  (2)(x+y-3z)⁸ [x⁵yz²]

次の式の展開式における、[ ]内のものを求めよ。
(1) (x²+1/x)⁷ [x²の項の係数]  (2)(2x³-1/3x²)⁵ [定数項]   

次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (x+y+z)⁶ [x²yz³]
(2) (x+2y+3z)⁶ [x³y²z]
(3) (2x-3y+z)⁷ [x²y²z³]
(4) (x+y-3z)⁸ [x⁵z³]
チャプター:

0:00 オープニング
0:05 1問目解説
2:46 2問目解説
4:57 3問目解説
8:24 4問目解説
12:17 エンディング
 

単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (2x²-1)⁶ [x⁶]  (2)(2x³-3x)⁵ [x⁹]

次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (a+b+c)⁶ [ab²c³]  (2)(x+y-3z)⁸ [x⁵yz²]

次の式の展開式における、[ ]内のものを求めよ。
(1) (x²+1/x)⁷ [x²の項の係数]  (2)(2x³-1/3x²)⁵ [定数項]   

次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (x+y+z)⁶ [x²yz³]
(2) (x+2y+3z)⁶ [x³y²z]
(3) (2x-3y+z)⁷ [x²y²z³]
(4) (x+y-3z)⁸ [x⁵z³]
投稿日:2025.01.29

<関連動画>

でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人大阪大学

自然数$m,n$が
$\sqrt{n}\leqq\frac{m}{2}<\sqrt{n+1}$を満たす次を証明せよ
$(1)m^2-4n=0または1$
$(2)m<\sqrt{n}+$$\sqrt{n+1}<$$m+1$
この動画を見る 

嵐の方程式 5-1=0 をオイラーの公式を使って よさまつが証明するよ

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#式と証明#恒等式・等式・不等式の証明#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式 説明動画です
この動画を見る 

島根大 愛知工大 整数・複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#恒等式・等式・不等式の証明#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
島根大学過去問題
a,b,c実数
$a+b+c=3$
$ab+bc+ca \leqq 3$を示せ。

愛知工業大学過去問題
$Z=1-i$
$Z^7+Z^6+Z^5+Z^4+Z^3+Z^2+Z+1$の値
この動画を見る 

二項定理を使ってあることに気付ける?【2017年一橋大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#恒等式・等式・不等式の証明#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ P(0)=1,P(x+1)-P(x)=2x$を満たす整式$P(x)$を求めよ。

2017一橋大過去問
この動画を見る 

【高校数学】 数Ⅱ-12 恒等式①

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式がxについての恒等式となるように、定数a、b、cの値を定めよう。

①$(3a+b)x+(2a-b-10)=0$

②$a(x-3)+b(x+1)=5x-3$

③$x^2=a(x-2)^2+b(х-2)+c$
この動画を見る 
PAGE TOP