福田のおもしろ数学528〜平面幾何の証明 - 質問解決D.B.(データベース)

福田のおもしろ数学528〜平面幾何の証明

問題文全文(内容文):

平行四辺形$ABCD$と内部の点$O$において

$\alpha+\beta=180°$のとき

$\angle OBC=\angle ODC$

を証明せよ。

図は動画内参照
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

平行四辺形$ABCD$と内部の点$O$において

$\alpha+\beta=180°$のとき

$\angle OBC=\angle ODC$

を証明せよ。

図は動画内参照
投稿日:2025.06.13

<関連動画>

数学「大学入試良問集」【16−5 複素数平面と軌跡の図示】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$z$を複素数とし、$i$を虚数単位とする。
(1)$\displaystyle \frac{1}{z+i}+\displaystyle \frac{1}{z-i}$が実数となる点$z$全体の描く図面$P$を複素数平面上にそれぞれ図示せよ。
(2)$z$が上で求められた図形$P$上を動くときに$\omega=\displaystyle \frac{z+i}{z-i}$の描く図形を複素数平面上に図示せよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題075〜浜松医科大学2017年度医学部第1問〜複素数の実部と虚部

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)|z| ≦ |z-($\sqrt 3 + i$)|, |z-$\bar{z}$| ≦ 1および|z-$2i$| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものを$\alpha$、実部と虚部の和が最大となるものを$\beta$とするとき、$\alpha$と$\beta$を求めよ。
(3)次の式で定義される$w_n$の実部を$R_n$とするとき、無限級数$\displaystyle\sum_{n=1}^{\infty}R_n$の和を求めよ。
$w_n=\displaystyle\frac{\{1+(2-\sqrt 3)i\}(\sqrt 3+i)^{3(n-1)}}{2^{4(n-1)}}$ $(n=1,2,3,\dots)$

2017浜松医科大学医学部過去問
この動画を見る 

福田の数学〜東京工業大学2022年理系第1問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とし、$f(z)=z^2+az+b$ とする。a,bが
$|a| \leqq 1,  |b| \leqq 1$
を満たしながら動くとき、$f(z)=0$を満たす複素数zが取りうる値の範囲を
複素平面上に図示せよ。

2022東京工業大学理系過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜|z|, arg zの範囲

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

${\Large\boxed{1}}$ 点$z$が、$|z+3-\sqrt3i|$$=\sqrt2|z$$+2-\sqrt3i|$ を満たしながら動く。
このとき、$|z|$の値の範囲と$z$の偏角$\theta$の範囲を求めよ。
ただし、$0 \leqq \theta \lt 2\pi$ とする。
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(2)

アイキャッチ画像
単元: #数Ⅱ#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$z$が原点中心、半径1の円周上を動くとき、次の条件を満たす
点$w$はどのような図形を描くか。
(1)$w=2iz+1$
(2)$w=\displaystyle \frac{3z-2i}{z-2}$

${\Large\boxed{2}}$ $\displaystyle \frac{z}{z^2+1}$が実数となるように$z$が動くとき、
点$z$はどのような図形を描くか。
この動画を見る 
PAGE TOP