福田の数学〜立教大学2022年経済学部第2問〜平面ベクトルの直交条件 - 質問解決D.B.(データベース)

福田の数学〜立教大学2022年経済学部第2問〜平面ベクトルの直交条件

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ tを正の実数とする。OA=1,\ OB=tである三角形OABにおいて、\overrightarrow{ a }=\overrightarrow{ OA },\\
\overrightarrow{ b }=\overrightarrow{ OB },\angle AOB=θとする。ただし、0 \lt θ \lt \frac{\pi}{2}とする。また、辺OAの中点\\
をM、辺OBを1:2に内分する点をNとする。次の問いに答えよ。\hspace{70pt}\\
(1)\overrightarrow{ AN }と\overrightarrow{ BM }を\overrightarrow{ a }と\overrightarrow{ b }を用いて表せ。\hspace{180pt}\\
(2)内積\overrightarrow{ AN }・\overrightarrow{ BM }をtと\cos θを用いて表せ。\hspace{148pt}\\
(3)\overrightarrow{ AN }∟\overrightarrow{ BM }であるとき、\cos θをtを用いて表せ。\hspace{119pt}\\
(4)\overrightarrow{ AN }∟\overrightarrow{ BM }であるとき、\cos θの最小値とそれを与えるtの値をそれぞれ求めよ。\hspace{5pt}\\
(5)\overrightarrow{ AN }∟\overrightarrow{ BM }となるθが存在するtの値の範囲を求めよ。\hspace{103pt}\\
\end{eqnarray}

2022立教大学経済学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ tを正の実数とする。OA=1,\ OB=tである三角形OABにおいて、\overrightarrow{ a }=\overrightarrow{ OA },\\
\overrightarrow{ b }=\overrightarrow{ OB },\angle AOB=θとする。ただし、0 \lt θ \lt \frac{\pi}{2}とする。また、辺OAの中点\\
をM、辺OBを1:2に内分する点をNとする。次の問いに答えよ。\hspace{70pt}\\
(1)\overrightarrow{ AN }と\overrightarrow{ BM }を\overrightarrow{ a }と\overrightarrow{ b }を用いて表せ。\hspace{180pt}\\
(2)内積\overrightarrow{ AN }・\overrightarrow{ BM }をtと\cos θを用いて表せ。\hspace{148pt}\\
(3)\overrightarrow{ AN }∟\overrightarrow{ BM }であるとき、\cos θをtを用いて表せ。\hspace{119pt}\\
(4)\overrightarrow{ AN }∟\overrightarrow{ BM }であるとき、\cos θの最小値とそれを与えるtの値をそれぞれ求めよ。\hspace{5pt}\\
(5)\overrightarrow{ AN }∟\overrightarrow{ BM }となるθが存在するtの値の範囲を求めよ。\hspace{103pt}\\
\end{eqnarray}

2022立教大学経済学部過去問
投稿日:2022.09.24

<関連動画>

【数C】平面ベクトル:2020年高2第2回駿台全国模試第7問解説してみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#駿台模試#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Oを中心とする半径1の円に内接する四角形ABCDについて、次の条件(I)(II)を考える。
(I)AO=-17/2*AB+5AC (II)OA・OC=OA・OD また、θ=∠AOCとする。次の問いに答えよう。
(1)内積OA・OCをθを用いて表そう。
(2)(I)が成り立つとき、(i)OBをOAとOCを用いて表そう。(ii)cosθの値を求めよう。
この動画を見る 

【受験算数】平面図形:海城過去問~正六角形と正三角形の面積を比べる

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
周の長さが6㎝の正六角形の面積は、周の長さが6㎝の正三角形の面積の何倍ですか。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題077〜東京大学2018年度理系第3問〜ベクトル方程式の表す点の存在範囲と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#微分法と積分法#ベクトルと平面図形、ベクトル方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#面積、体積#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
第3問
放物線y=$x^2$のうち-1≦x≦1を満たす部分をCとする。
座標平面上の原点Oと点A(1,0)を考える。k>0を実数とする。点PがC上を動き、点Qが線分OA上を動くとき
$\overrightarrow{OR}$=$\frac{1}{k}\overrightarrow{OP}$+$k\overrightarrow{OQ}$
を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle\lim_{k \to +0}S(k)$, $\displaystyle\lim_{k \to \infty}S(k)$を求めよ。

2018東京大学理系過去問
この動画を見る 

【数C】平行四辺形状のマス目上にあるベクトルを表そう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #アドバンスプラス#アドバンスプラス数Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
Adプラ数学B問題606
次に図示された2つのベクトルvec(p),vec(q)をvec(a),vec(b)で表せ。
この動画を見る 

【数B】ベクトル:ベクトルの基本⑭係数比較、メネラウスの定理でベクトルを求める

アイキャッチ画像
単元: #数A#図形の性質#平面上のベクトル#内心・外心・重心とチェバ・メネラウス#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD,BEの交点をPとする。ABをb,ACをcとするとき、APをb,cを用いて表せ.
この動画を見る 
PAGE TOP