【数Ⅲ】極限:関数の極限 x=-tの置換 - 質問解決D.B.(データベース)

【数Ⅲ】極限:関数の極限 x=-tの置換

問題文全文(内容文):
次の極限を求めよう。
$\displaystyle \lim_{x\to-\infty}(\sqrt{x^2+2x+3}+x)$
チャプター:

0:00 オープニング
0:05 問題文
0:11 x→-∞のときはx=-tと置換する
0:37 式変形
0:57 有理化
1:30 分母の最高次で割る
2:10 不定形を解消してからx→0に
2:26 名言

単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限を求めよう。
$\displaystyle \lim_{x\to-\infty}(\sqrt{x^2+2x+3}+x)$
投稿日:2021.09.21

<関連動画>

【高校数学】数Ⅲ-78 関数の極限③(右側左側)

アイキャッチ画像
単元: #関数と極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to -0}\dfrac{\vert x \vert}{x}$

②$\displaystyle \lim_{x\to 3+0}\dfrac{x^2-3x}{\vert x-3 \vert}$

③$\displaystyle \lim_{x\to 1-0}\dfrac{\vert x-1\vert}{x^3-1}$

④$x\to 0$のときの$\dfrac{x}{\vert x\vert}$
この動画を見る 

大学入試問題#218 東京都市大学(2019) 定積分と極限

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$:自然数
$a_n=\displaystyle \int_{1}^{\sqrt{ 2 }}x(2-x^2)^ndx$とおく
$\displaystyle \lim_{ n \to \infty }n\ a_n$を求めよ。

出典:2019年東京都市大学 入試問題
この動画を見る 

福田のわかった数学〜高校3年生理系029〜極限(29)関数の極限、三角関数の極限(9)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 三角関数の極限$(9)\\
\lim_{x \to 0}\frac{\sqrt{8+12x+\cos x}-3+\sin x}{x}$
を求めよ。
この動画を見る 

【高校数学】数Ⅲ-67 数列の極限③

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{n\to\infty}\dfrac{n^2-n+2}{3n^2-5}$

②$\displaystyle \lim_{n\to\infty}\dfrac{5n^2-1}{4+n}$

③$\displaystyle \lim_{n\to\infty}(\sqrt{n+1}-\sqrt n)$

④$\displaystyle \lim_{n\to\infty}(\sqrt{n^2-2n}-n)$

⑤$\displaystyle \lim_{n\to\infty}\dfrac{4n}{\sqrt{n^2+n}+3n}$

⑥$\displaystyle \lim_{n\to\infty}\dfrac{5}{\sqrt{n^2+2n}-n}$
この動画を見る 

福田の数学〜北海道大学2023年理系第5問〜中間値の定理と関数の増減PART1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ a,bを$a^2$+$b^2$<1をみたす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部にある2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)f(θ)=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式f(θ)=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも1つ存在することを示せ。
(2)Dの座標をa, $\theta$を用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも1つ存在することを示せ。また、このようなθはただ1つであることを示せ。

2023北海道大学理系過去問
この動画を見る 
PAGE TOP