【数Ⅲ】【関数と極限】次の数列が収束するような実数xの値の範囲を極限を求めよ。(1) {(x/1+2x)^n}(2) {x(x²-5x+5)^n-1} - 質問解決D.B.(データベース)

【数Ⅲ】【関数と極限】次の数列が収束するような実数xの値の範囲を極限を求めよ。(1) {(x/1+2x)^n}(2) {x(x²-5x+5)^n-1}

問題文全文(内容文):
次の数列が収束するような実数xの値の範囲を極限を求めよ。
(1) { $\dfrac{x}{1+2x}^n$ }

(2) { $x(x²-5x+5)^{n-1}$ }
チャプター:

0:00 問題と方針
1:11 (1)の解説
2:44 (2)の解説

単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の数列が収束するような実数xの値の範囲を極限を求めよ。
(1) { $\dfrac{x}{1+2x}^n$ }

(2) { $x(x²-5x+5)^{n-1}$ }
投稿日:2025.06.24

<関連動画>

大学入試問題#505「綺麗な数列の問題」 #神戸大学 (2022) #数列 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_{n+1}・a_n }$のとき
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ

出典:2022年神戸大学 入試問題
この動画を見る 

数3を使わずに分数関数の最小値を求める

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x$は正の実数である.
$\dfrac{x^2+x+196}{x+1}$は$x=\Box$のとき,最小値$\Box$となる.
$\Box$を求めよ.
この動画を見る 

福田の数学〜立教大学2023年理学部第4問〜数学的帰納法とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 正の数列$x_1$,$x_2$,$x_3$,...,$x_n$,... は以下を満たすとする。
$x_1$=8, $x_{n+1}$=$\sqrt{1+x_n}$ ($n$=1,2,3,...)
このとき、次の問いに答えよ。
(1)$x_2$,$x_3$,$x_4$をそれぞれ求めよ。
(2)すべての$n$≧1について($x_{n+1}$-$\alpha$)($x_{n+1}$+$\alpha$)=$x_n$-$\alpha$ となる定数$\alpha$で、
正であるものを求めよ。
(3)$\alpha$を(2)で求めたものとする。すべての$n$≧1について$x_n$>$\alpha$であることを$n$に関する数学的帰納法で示せ。
(4)極限値$\displaystyle\lim_{n \to \infty}x_n$を求めよ。
この動画を見る 

大学入試問題#378「どこまで記述すべきか・・・」 #奈良県立医科大学2015 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#奈良県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin\ x-\sin(\tan\ x)}{x-\tan\ x}$

出典:2015年奈良県立医科大学 入試問題
この動画を見る 

ハルハルさん作成問題 #極限の存在範囲

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{\sqrt{ (1+\displaystyle \frac{a^2}{x})(1+\displaystyle \frac{a}{x})(1+\displaystyle \frac{b}{x}) }-1}{x^b}=\displaystyle \frac{b^2}{a}+1$
を満たす実数の組$(a,b)$を平面上に図示せよ
この動画を見る 
PAGE TOP