大学入試問題#686「簡単ですみません。」 富山大学(2023) 計算問題 - 質問解決D.B.(データベース)

大学入試問題#686「簡単ですみません。」 富山大学(2023) 計算問題

問題文全文(内容文):
$x^4-3x^2+1=0$のとき
$x^2+\displaystyle \frac{1}{x^2},x^6+\displaystyle \frac{1}{x^6}$の値を求めよ

出典:2023年富山大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師: ますただ
問題文全文(内容文):
$x^4-3x^2+1=0$のとき
$x^2+\displaystyle \frac{1}{x^2},x^6+\displaystyle \frac{1}{x^6}$の値を求めよ

出典:2023年富山大学 入試問題
投稿日:2023.12.27

<関連動画>

千葉大(医)訂正版 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2013千葉大学過去問題
$m^4+14m^2$が$2m+1$の整数倍となるような整数mを全て
この動画を見る 

滋賀大・愛知医大 n個のサイコロ 確率 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#愛知医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
n個のサイコロを投げる$(n \geqq 2)$次の確率を求めよ。
滋賀大学過去問題
(1)出る目の最小値が2
(2)出る目の最小値が2、最大値が5
愛知医科大学過去問題
(3)出る目の積が10の倍数
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第1問(2)〜指数計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
問題文全文(内容文):
${\large\boxed{1}}$(2)aを正の実数、pを実数とする。$a^{2p}=3$のとき、
$\frac{a^{2p}-a^{-2p}}{a^p-a^{-p}}$の値は$\boxed{\ \ ア\ \ }$である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

【化学】有機化学:2021年度慶應義塾大学薬学部大問4(1)

アイキャッチ画像
単元: #化学#有機#大学入試過去問(化学)#有機化合物の特徴と構造#慶應義塾大学#理科(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2021年度慶應義塾大学薬学部大問4(1)の解説動画です
化合物Aは、水素原子、炭素原子、酸素原子のみから構成され、ベンゼン環を2個含む分子量500以下のエステルである。0.846gの化合物Aを完全燃焼すると、二酸化炭素2.51gと水0.594gを生じた。化合物Aに水酸化ナトリウム水溶液を加えて加熱し加水分解すると、化合物Bのナトリウム塩と化合物Cが生成した。化合物Bを過マンガン酸カリウムで酸化すると化合物Dが生成した。化合物Dと化合物Eを次々と縮合重合させると、高分子化合物Fが得られ、これは繊維として衣料品に用いられる他、樹脂としてペットボトルの原料となる。
一方、化合物Cに濃硫酸を加え170°Cで加熱したところ、化合物Cおよびその構造異性体H、Iが生成した。化合物Hと化合物Iはシスートランス異性体の関係にあり、化合物 Hはシス形、化合物Iはトランス形である。化合物Cをオゾン分解したところ、化合物Jと化合物Kが得られた。また、化合物 Hをオゾン分解したところ、ベンズアルデヒドと化合物Lが得られた。化合物Jと化合物Lはフェーリング液を還元し赤色沈澱を生成した。化合物Kはフェーリング液を還元しなかったが、ヨードホルム反応は陽性だった。なお、オゾン分解の反応経路を図1に示す。
問1 化合物Aの分子量を求めよ。
この動画を見る 

福田の数学〜早稲田大学2025商学部第1問(4)〜正九角形の頂点を結んでできる正三角形の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#図形の性質#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)$P$を平面上の正九角形とする。

$P$の異なる$2$つの頂点を通る直線をすべて考える。

これら$36$本の直線のうちの$3$本により平面上で

囲まれてできる正三角形の総数は$\boxed{エ}$である。

ただし、互いに合同でも位置の異なるものは

異なる三角形として数える。

$2025$年早稲田大学商学部過去問題
この動画を見る 
PAGE TOP