【数Ⅲ-151】定積分③(レベルアップ編) - 質問解決D.B.(データベース)

【数Ⅲ-151】定積分③(レベルアップ編)

問題文全文(内容文):
数Ⅲ(定積分③・レベルアップ編)

Q.次の定積分を求めよ。

①$\int_{\frac{\pi}{6}}^\frac{\pi}{2} sinx \ sin3x\ dx$

➁$\int_{0}^\pi |cosx |\ dx$

③$\int_{0}^\pi |sinx -\sqrt{3}\ cosx|\ dx$
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分③・レベルアップ編)

Q.次の定積分を求めよ。

①$\int_{\frac{\pi}{6}}^\frac{\pi}{2} sinx \ sin3x\ dx$

➁$\int_{0}^\pi |cosx |\ dx$

③$\int_{0}^\pi |sinx -\sqrt{3}\ cosx|\ dx$
投稿日:2019.07.15

<関連動画>

福田の1.5倍速演習〜合格する重要問題085〜慶應義塾大学2020年度理工学部第4問〜定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数全体で定義された連続な関数f(x)に対し、
$g(x)$=$\displaystyle\int_0^{2x}e^{-f(t-x)}dt$
とおく。
(1)f(x)=xのとき、g(x)=$\boxed{\ \ ソ\ \ }$である。
(2)実数全体で定義された連続な関数f(x)に対し、g(x)は奇関数であることを示しなさい。
(3)f(x)=$\sin x$のとき、g(x)の導関数g'(x)を求めると、g'(x)=$\boxed{\ \ タ\ \ }$である。
(4)f(x)が偶関数であり、g(x)=$x^3$+3xとなるとき、f(x)=$\boxed{\ \ チ\ \ }$である。このとき、$\displaystyle\int_0^1f(x)dx$の値は$\boxed{\ \ ツ\ \ }$である。

2020慶應義塾大学理工学部過去問
この動画を見る 

大学入試問題#480「計算量が多いのかもしれません」  山形大学(2016) #微積の応用②

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$微分可能な関数
$e^{-x}f(x)+\displaystyle \int_{0}^{x} e^{-t}f(t)dt=1+e^{-2x}(3\ \sin\ x-\cos\ x)$を満たす$f(x)$を求めよ

出典:2016年山形大学 入試問題
この動画を見る 

#福島大学2024#定積分_4#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x\sqrt{ 1-x }$ $dx$

出典:2024年福島大学
この動画を見る 

#電気通信大学2015#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^2(1-x)^9 dx$

出典:2015年電気通信大学
この動画を見る 

大学入試問題#147 三重大学(2020) 積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$x \geqq 1$のとき
$x \geqq 1+log\ x$を示せ


(2)
$\displaystyle \int_{1}^{e}\displaystyle \frac{log\ x}{1+log\ x}dx \geqq \displaystyle \frac{1}{2}$を示せ

出典:2020年三重大学 入試問題
この動画を見る 
PAGE TOP