【数Ⅲ-151】定積分③(レベルアップ編) - 質問解決D.B.(データベース)

【数Ⅲ-151】定積分③(レベルアップ編)

問題文全文(内容文):
数Ⅲ(定積分③・レベルアップ編)

Q.次の定積分を求めよ。

①$\int_{\frac{\pi}{6}}^\frac{\pi}{2} sinx \ sin3x\ dx$

➁$\int_{0}^\pi |cosx |\ dx$

③$\int_{0}^\pi |sinx -\sqrt{3}\ cosx|\ dx$
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分③・レベルアップ編)

Q.次の定積分を求めよ。

①$\int_{\frac{\pi}{6}}^\frac{\pi}{2} sinx \ sin3x\ dx$

➁$\int_{0}^\pi |cosx |\ dx$

③$\int_{0}^\pi |sinx -\sqrt{3}\ cosx|\ dx$
投稿日:2019.07.15

<関連動画>

【高校数学】毎日積分33日目【難易度:★★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式が$1\leqq x\leqq 2$で成り立つような関数f(x)と定数A,Bを求めよ.
$\int_{\frac{1}{x}}^{\frac{2}{x}}|logy|f(xy)dy=3x(logx-1)+A+\frac{B}{x}$
ただし,f(x)は$1\leqq x\leqq 2$に対して定義される連続関数とする.(東京工業大学 2019)
この動画を見る 

福田の1.5倍速演習〜合格する重要問題020〜東京工業大学2016年度理系数学第5問〜媒介変数で表された曲線の追跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京工業大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次のように媒介変数表示されたxy平面上の曲線をCとする。
$\left\{\begin{array}{1}
x=3\cos t-\cos3t
y=3\sin t-\sin3t
\end{array}\right.$
ただし、$0 \leqq t \leqq \frac{\pi}{2}$である。
(1)$\frac{dx}{dt}$および$\frac{dy}{dt}$を計算し、Cの概形を図示せよ。
(2)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2016東京工業大学理系過去問
この動画を見る 

#数検準1級1次過去問#定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{e^2-1} log(x+1)$ $dx$

出典:数検準1級1次
この動画を見る 

【高校数学】毎日積分72日目~47都道府県制覇への道~【⑯鳥取】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【鳥取大学 2023】
負でない整数$n=0,1,2,・・・$と正の実数$x>0$に対し、
$\displaystyle I_n=\frac{1}{n!}\int_0^xt^ne^{-t}dt$
とおく。以下の問いに答えよ。
(1) $I_0,I_1$を求めよ。
(2) $n=1,2,3,・・・$に対し、$I_n$と$I_{n-1}$の関係式を求めよ。
(3) $I_n(n=0,1,2,・・・)$を求めよ。
この動画を見る 

大学入試問題#418「場合分けがめんどくさいだけの積分」 藤田保健衛生大学医学部2016 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} |x\ \sin(x-\displaystyle \frac{\pi}{2})| dx$

出典:2016年藤田保健衛生大学医学部 入試問題
この動画を見る 
PAGE TOP