出題者の意図を汲みとるだけの問題。灘高の計算 - 質問解決D.B.(データベース)

出題者の意図を汲みとるだけの問題。灘高の計算

問題文全文(内容文):
$①(2\sqrt2-3)^2=?$
$②\sqrt{\sqrt{(10-7\sqrt2}^2)-\sqrt{(7-5\sqrt2}^2)}=?$
?を求めよ.

灘高校過去問
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$①(2\sqrt2-3)^2=?$
$②\sqrt{\sqrt{(10-7\sqrt2}^2)-\sqrt{(7-5\sqrt2}^2)}=?$
?を求めよ.

灘高校過去問
投稿日:2022.12.04

<関連動画>

他の問題もあり!

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x.y.zを整数とする。
次の条件を満たす整数の組(x,y,z)は全部で何組か?
(1)$1 \leqq x \leqq 5$ , $1 \leqq y \leqq 5$ , $1 \leqq z \leqq 5$
(2)$1 \leqq x \lt y \lt z \leqq 5$
(3)$x+y+z = 5$ $ \quad x \geqq 1 ,y \geqq 1,z \geqq 1$
(4)$x+y+z = 5$ $ \quad x \geqq 0 ,y \geqq 0,z \geqq 0$
(5)$1 \leqq x \leqq y \leqq z \leqq 5$

大阪経済大学
この動画を見る 

福田の数学〜一橋大学2022年文系第3問〜同値関係の証明と不等式の表す領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#恒等式・等式・不等式の証明#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 次の問いに答えよ。\\
(1)実数x,yについて、「|x-y| \leqq x+y」であることの必要十分条件は\\
「x \geqq 0かつy \geqq 0 」であることを示せ。\\
(2)次の不等式で定まるxy平面上の領域を図示せよ。\\
|1+y-2x^2-y^2| \leqq 1-y-y^2
\end{eqnarray}

2022一橋大学文系過去問
この動画を見る 

中学生にとっては激ムズすぎる 仙台育英(改)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2次方程式$2x^2-mx-m=0$の解の1つが1よりも大きいとき、mの値の範囲を求めよ。
(仙台育英学園高等学校 誘導省略)
この動画を見る 

数学「大学入試良問集」【6−5 母線の等しい四面体】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1辺の長さが2の正三角形$ABC$を底面とし、
$OA=OB=OC=2a(a \gt 1)$
である四面体$OABC$について、辺$AB$の中点を$M$とし、頂点$O$から直線$CM$に下した垂線を$OH$とする。
$\angle OMC=\theta$とするとき、次の各問いに答えよ。
(1)$\cos\theta$を$a$を用いて表せ。
(2)$OH$の長さを$a$を用いて表せ。
(3)$OH$の長さが$2\sqrt{ 3 }$になるときの$a$の値を求めよ。
この動画を見る 

【数Ⅰ】【集合と論証】集合:ベン図を利用した問題 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$U=\{1,2,3,4,5,6,7,8,9\}$を全体集合とする。$U$の部分集合$A,B$について
$A∩B=\{2\}$ $\overline{A}∩B=\{4,6,8\}$ $ \overline{A}∩\overline{B}=\{1,9\}$
であるとき、次の∩を求めよ。
(1)$A∪B$
(2)$B$
(3)$A∩\overline{B}$

$U=\{x|1≦x≦10、xは整数\}$を全体集合とする。$U$の部分集合
$A=\{1,2,3,4,8\} B=\{3,4,5,6\} C=\{2,3,6,7\}$
について、次の集合を求めよ。
(1)$A∩B∩C$
(2)$A∪B∪C$
(3)$A∩B∩\overline{C}$
(4)$\overline{A}∩B∩\overline{C}$
(5)$\overline{(A∩B∩C)}$
(6)$(A∪C)∩\overline{B}$

$A=\{1,3,3a-2\}$  $B=\{-5、a+2、a^2-2a+1\}$ $A∩B=\{1,4\}$のとき
定数$a$の値と和集合$A∪B$を求めよ。
この動画を見る 
PAGE TOP