福田の数学〜北海道大学2025理系第3問〜部分積分と極限 - 質問解決D.B.(データベース)

福田の数学〜北海道大学2025理系第3問〜部分積分と極限

問題文全文(内容文):

$\boxed{3}$

実数$a$および自然数$n$に対して、定積分

$I(a,n)=\displaystyle \int_{0}^{2\pi} e^{ax} \sin (nx) dx$

を考える。ここで$e$は自然対数の底である。

(1)$I(a,n)$を求めよ。

(2)$a_n=\dfrac{\log _n}{2\pi} (n=1,2,3,\cdots)$のとき、

極限$\displaystyle \lim_{n\to\infty} I(a_n,n)$を求めよ。

ただし、$\log_n$は$n$の自然対数である。

また、必要ならば$\displaystyle \lim_{n\to\infty}\dfrac{\log_n}{n}=0$である

ことを用いてもよい。

$2025$年北海道大学理系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

実数$a$および自然数$n$に対して、定積分

$I(a,n)=\displaystyle \int_{0}^{2\pi} e^{ax} \sin (nx) dx$

を考える。ここで$e$は自然対数の底である。

(1)$I(a,n)$を求めよ。

(2)$a_n=\dfrac{\log _n}{2\pi} (n=1,2,3,\cdots)$のとき、

極限$\displaystyle \lim_{n\to\infty} I(a_n,n)$を求めよ。

ただし、$\log_n$は$n$の自然対数である。

また、必要ならば$\displaystyle \lim_{n\to\infty}\dfrac{\log_n}{n}=0$である

ことを用いてもよい。

$2025$年北海道大学理系過去問題
投稿日:2025.03.24

<関連動画>

【数Ⅲ-155】定積分の部分積分法①

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の部分積分法①)
Q次の定積分の値を求めよ。

①$\int_0^{\pi}x \sin x\ dx$

➁$\int_0^{1}xe^{-2x}\ dx$

③$\int_1^e\log x\ dx$
この動画を見る 

大学入試問題#628「3分クッキング!」 東邦大学医学部(2015) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{2} \displaystyle \frac{x^2・2^{-x}}{2^x+2^{-x}} dx$

出典:2015年東邦大学医学部 入試問題
この動画を見る 

【高校数学】滋賀医科大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分80日目~47都道府県制覇への道~【㉓滋賀】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀医科大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【滋賀医科大学 2023】
実数全体を定義域とする微分可能な関数$f(x)$は、常に$f(x)>0$であり、等式
$\displaystyle f(x)=1+\int_0^x e^t(1+t)f(t)dt$
を満たしている。
(1) $f(0)$を求めよ。
(2) $logf(x)$の導関数$(logf(x))’$を求めよ。
(3) 関数$f(x)$を求めよ。
(4) 方程式$f(x)=\frac{1}{\sqrt{2}}$を解け。
この動画を見る 

【高校数学】毎日積分46日目~②tan1/8π,tan3/8πを求めよ~【難易度:★★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{-\sqrt{2}}^{\sqrt{2}}\frac{8}{x^4+4}dx$
(2)$tan\frac{1}{8}π,tan\frac{3}{8}π$を求めよ
この動画を見る 

大学入試問題#371「少し変わった置換積分」 京都大学 改 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{2}{\sqrt{ 3 }}}^{2}\displaystyle \frac{dx}{x\sqrt{ x^2-1 }}$

出典:京都大学 入試問題
この動画を見る 
PAGE TOP