福田の数学〜慶應義塾大学2021年医学部第1問(1)〜ベクトルの図形への応用 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年医学部第1問(1)〜ベクトルの図形への応用

問題文全文(内容文):
${\Large\boxed{1}}$ $(1)点O$を中心とする$半径1$の円に内接する$三角形ABC$において
$-5\overrightarrow{ OA }+7\overrightarrow{ OB }+8\overrightarrow{ OC }=\overrightarrow{ 0 }$
が成り立っているとする。また$直線OA$と$直線BC$の交点を$P$とする。
このとき$線分BC,OP$の長さを求めると$BC=\boxed{\ \ (あ)\ \ },$$OP=\boxed{\ \ (い)\ \ }$である。さらに$三角形ABC$の面積は$\boxed{\ \ (う)\ \ }$である。


2021慶應義塾大学医学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $(1)点O$を中心とする$半径1$の円に内接する$三角形ABC$において
$-5\overrightarrow{ OA }+7\overrightarrow{ OB }+8\overrightarrow{ OC }=\overrightarrow{ 0 }$
が成り立っているとする。また$直線OA$と$直線BC$の交点を$P$とする。
このとき$線分BC,OP$の長さを求めると$BC=\boxed{\ \ (あ)\ \ },$$OP=\boxed{\ \ (い)\ \ }$である。さらに$三角形ABC$の面積は$\boxed{\ \ (う)\ \ }$である。


2021慶應義塾大学医学部過去問
投稿日:2021.06.23

<関連動画>

【数C】ベクトルの基本⑭係数比較、メネラウスの定理でベクトルを求める

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD,BEの交点をPとする。ABをb,ACをcとするとき、APをb,cを用いて表せ
この動画を見る 

【数C】ベクトルが「等しい」とは??

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #アドバンスプラス#アドバンスプラス数Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
|vec(a)|=5であるvec(a)がある。
(1) vec(a)と同じ向きの単位ベクトルを、vec(a)を用いて表せ。
(2) vec(a)と平行で、大きさが3のベクトルを、vec(a)を用いて表せ。
この動画を見る 

【高校数学】 数B-33 平面上の点の存在位置②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△OABに対し、$\overrightarrow{ OP }=s\overrightarrow{ OA }+t\overrightarrow{ OB } $とする。実数S,tが次の条件を満たしながら動くとき、 点Pの存在範囲を図示しよう。

①$s+t \leqq \displaystyle \frac{1}{2},s \geqq 0,t \geqq 0$

②$3s+2t \leqq 3,S \geqq 0,t \geqq 0$
この動画を見る 

【わかりやすく】位置ベクトル 点Pの位置を求める問題①(数学B/平面ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$と点$P$に対して、以下の等式が成立するとき、点$P$はどのような位置にあるか。
(1)$\overrightarrow{ PA }+\overrightarrow{ PB }+\overrightarrow{ PC }=\overrightarrow{ AC }$
(2)$\overrightarrow{ AP }+\overrightarrow{ BP }+\overrightarrow{ CP }=\vec{ 0 }$
この動画を見る 

【数C】【ベクトルの内積】2つのベクトルx, yが2x-y=(0,4), 2|x|=|y|, xy=6を満たすとき, x, yを求めよ。

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つのベクトル$\vec{x}, \vec{y}$が$2\vec{x}-\vec{y}=(0,4)$,
$2|\vec{x}|=|\vec{y}|, \vec{x}\cdot\vec{y}=6$を満たすとき,
$\vec{x}, \vec{y}$を求めよ。
この動画を見る 
PAGE TOP