2023高校入試解説4問目 もはや高校範囲 西大和学園 - 質問解決D.B.(データベース)

2023高校入試解説4問目 もはや高校範囲 西大和学園

問題文全文(内容文):
1⃣ 2⃣ 2⃣ 3⃣ 4⃣ 5⃣と書かれたカードがある。
5枚のカードを選んで1列に並べてできる5桁の整数は全部で何通り?

西大和学園高等学校
単元: #数学(中学生)#数A#場合の数と確率#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1⃣ 2⃣ 2⃣ 3⃣ 4⃣ 5⃣と書かれたカードがある。
5枚のカードを選んで1列に並べてできる5桁の整数は全部で何通り?

西大和学園高等学校
投稿日:2023.01.10

<関連動画>

【高校数学】条件付き確率例題~これはできなヤバイ~ 2-8.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
男子46人,女子54人に試験を行ったところ、男子の合格者は30人、
女子の合格者は36人であった。
この100人の中から1人を選ぶとき次の確率を求めよ。
(a) 選んだ1人が女子であったとき、その人が合格している確率
(b) 選んだ1人が不合格者であったとき、その人が男子である確率

-----------------

2⃣
ある試行における事象$A,B$について、$P(A \cap B)=0.4,P(A)=0.8,P(B)=0.5$のとき
$P_{A}(B) P_{B}(A)$を求めよ。

-----------------

3⃣
8本のくじの中に当たりが3本ある。引いたくじをもとに戻さないで
A、Bの2人がこの順に1本ずつ引くとき、次の確率を求めよ。
(a) Aが当たり、Bがはずれる確率
(b) 2人とも当たる確率
(c) Bが当たる確率
(d) 1人だけが当たる確率
この動画を見る 

【高校数学】確率の基本事項~記号とか考え方~ 2-1【数学A】

アイキャッチ画像
単元: #数A#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2個のさいころを同時に投げるとき、出る目の和が5になる確率を求めよ。
この動画を見る 

数学「大学入試良問集」【5−5 点の移動と確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
座標平面上を点$P$が次の規則に従って動くとする。
1回サイコロを振るごとに
 ・1または2の目が出ると、$x$軸の正の方向に1進む。
 ・3または4の目が出ると、$y$軸の正の方向に1進む。
 ・5または6の目が出ると、直線$y=x$に関して対称な点に動く。
  ただし、直線$y=x$上にある場合はその位置にとどまる。
点$P$は最初に原点にあるとする。

(1)
$A$回サイコロを振った後の点$P$が直線$y=x$上にある確率を求めよ。

(2)
$m$を$0 \leqq m \leqq n$を満たす整数とする。
$n$回サイコロを振った後の点$P$が直線$x+y=m$上にある確率を求めよ。
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第3問〜確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
二つの袋$A,B$と一つの箱がある。$A$の袋には赤球2個と白球1個が入っており、
$B$の袋には赤球3個と白球1個が入っている。また、箱には何も入っていない。

(1)$A,B$の袋から球をそれぞれ1個ずつ同時に取り出し、球の色を調べずに箱に入れる。
$(\textrm{i})$箱の中の2個の球のうち少なくとも1個が赤球である確率は$\displaystyle \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$である。

$(\textrm{ii})$箱の中をよくかき混ぜてから球を1個取り出すとき、取り出した球が赤球
である確率は$\displaystyle \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$であり、取り出した球が赤球であったときに、
それが$B$の袋に入っていたものである条件付き確率は$\displaystyle \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コサ\ \ }}$である。

(2)$A,B$の袋から球をそれぞれ2個ずつ同時に取り出し、球の色を調べずに箱に入れる。
$(\textrm{i})$箱の中の4個の球のうち、ちょうど2個が赤球である確率は$\displaystyle \frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}$である。
また、箱の中の4個の球のうち、ちょうど3個が赤球である確率は$\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$である。

$(\textrm{ii})$箱の中をよくかき混ぜてから球を2個同時に取り出すとき、どちらの球も
赤球である確率は$\displaystyle \frac{\boxed{\ \ タチ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。また、取り出した2個の球がどちらも
赤球であったときに、それらのうちの1個のみがBの袋に入っていたものである
条件付き確率は$\displaystyle \frac{\boxed{\ \ トナ\ \ }}{\boxed{\ \ ニヌ\ \ }}$である。
この動画を見る 

福田の数学〜千葉大学2022年理系第1問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 円周を12等分するように点A_1,A_2,A_3,\ldots,A_{12}が時計回りに並んでいる。\\
また、白球2個と黒球4個が入った袋がある。点Pを、次の操作によって\\
12個の点上を移動させる。\\
操作:袋から球を一つ取り出した後にサイコロを投げる。白球ならば時計回りに、\\
黒球ならば反時計回りに、サイコロの目の数だけPを移動させる。\\
取り出した球は袋に戻さないこととする。\\
Pを最初に点 A_1に置く。操作を1回行い、PがA_1から移動した点をQとおく。\\
続けて操作を1回行い、PがQから移動した点をRとおく。\\
もう一度操作を行い、 PがRから移動した点をSとおく。\\
(1) R=A_1となる確率を求めよ。\\
(2)3点Q, R, Sを結んでできる図形が正三角形となる確率を求めよ。\\
\end{eqnarray}

2022千葉大学理系過去問
この動画を見る 
PAGE TOP