【理数個別の過去問解説】2020年度北海道大学 数学 第3問(1)(2)解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2020年度北海道大学 数学 第3問(1)(2)解説

問題文全文(内容文):
nを2以上の自然数とする。一個のサイコロを続けてn回投げる試行を行い、
出た目を順にX₁X₂・・・Xnとする。
(1)X₁X₂・・・Xnの最大公約数が3となる確率をnの式で表せ。
(2)X₁X₂・・・Xnの最大公約数が1となる確率をnの式で表せ。
チャプター:

0:00 オープニング
0:25 問題文
0:50 ポイント1、2、3
3:10 証明スタート
6:00 エンディング

単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#大学入試過去問(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
nを2以上の自然数とする。一個のサイコロを続けてn回投げる試行を行い、
出た目を順にX₁X₂・・・Xnとする。
(1)X₁X₂・・・Xnの最大公約数が3となる確率をnの式で表せ。
(2)X₁X₂・・・Xnの最大公約数が1となる確率をnの式で表せ。
投稿日:2023.06.08

<関連動画>

場合の数 4STEP数A 81 重複組合せ4【烈’s study!がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のさいころを3回投げて出る目の数を順にa,b,cとする。次の場合は何通りあるか。
(1)a (2)a≦b≦c
この動画を見る 

場合の数 4STEP数A 20,21 3つの集合~共通部分に気をつけよう~【さこすけ’s サイエンスがていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題20 
1から100までの整数のうち、次のような数は何個あるか。
(1)2,3,7の少なくとも1つで割り切れる数
(2)2では割り切れるが、3でも7でも割り切れない数
問題21
68人の人に、A,B,Cの3都市への旅行の経験を調査したところ、全員がA,B,Cの
うち少なくとも1つへは行ったことがあった。また、BとCの両方、CとAの両方、
AとBの両方へ行ったことのある人の数は、それぞれ21人、19人、25人であり、
BとCの少なくとも一方、CとAの少なくとも一方、AとBの少なくとも一方へ
行ったことのある人の数は、それぞれ59人、56人、60人であった。
(1)A,B,Cの各都市へ行ったことのある人の数は、それぞれ何人か。
(2)A,B,Cの全都市へ行ったことのある人の数は何人か。
この動画を見る 

【さこすけ’s サイエンスがていねいに解説】場合の数 4STEP数A 15,16,17 集合の個数~ベン図も使えます~

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
15 全体集合Uと,その部分集合A,Bに対してn(U)=50,n(A∪B)=42,n(A∩B)=3,
n(Aの補集合∩B)=15であるとき、次の集合の要素の個数を求めよ。
(1)Aの補集合∩Bの補集合        (2)A∩Bの補集合      (3)A
16 500以上1000以下の整数のうち,次のような数は何個あるか。
(1)11の倍数でない整数  (2)11の倍数であるが3の倍数でない整数
17 60人の生徒に数学と英語の試験を行った。数学の合格者は50人,
英語の合格者は30人,2教科ともに不合格であった者は8人であった。
(1)2教科とも合格した者は何人か。(2)数学だけ合格した者は何人か。
この動画を見る 

【数A】高2生必見!! 2019年8月 第2回 全統高2模試 大問4_確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロ を1回投げるごとに次の(規則)に従ってPを動かす。 (規則) ・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。 ・3の目が出たときはx軸の正の方向に2だけ動かす。 ・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。 例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy 座標が2である条件付き確率を求めよ。
この動画を見る 

場合の数 4STEP数A 32,33 樹形図の利用【さこすけ’s サイエンスがていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
梨4個、柿2個、桃2個から6個だけ取り出す方法は何通りあるか。
ただし、取り出さない果物があってもよいものとする。

上の図を、Aを出発点として一筆でかく方法は何通りあるか。
この動画を見る 
PAGE TOP