福田のおもしろ数学506〜相加平均と相乗平均の商の極限 - 質問解決D.B.(データベース)

福田のおもしろ数学506〜相加平均と相乗平均の商の極限

問題文全文(内容文):

自然数$n+1,n+2,\cdots,n+n$の

相加平均を$A_n$、相乗平均を$B_n$とするとき

$\displaystyle \lim_{n\to\infty}\dfrac{A_n}{B_n}$

を求めて下さい。
    
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

自然数$n+1,n+2,\cdots,n+n$の

相加平均を$A_n$、相乗平均を$B_n$とするとき

$\displaystyle \lim_{n\to\infty}\dfrac{A_n}{B_n}$

を求めて下さい。
    
投稿日:2025.05.22

<関連動画>

福田の数学〜慶應義塾大学2023年理工学部第2問〜空間ベクトルと2直線から等距離にある点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $k$を正の実数とし、空間内に点O(0,0,0), A(4$k$, $-4k$, $-4\sqrt 2k$), B(7, 5, $-\sqrt 2$)をとる。点CはO, A, Bを含む平面上の点であり、OA=4BCで、四角形OACBはOAを底辺とする台形であるとする。
(1)$\cos\angle$AOB=$\boxed{\ \ ア\ \ }$である。台形OACBの面積を$k$を用いて表すと$\boxed{\ \ イ\ \ }$となる。
また、線分ACの長さを$k$を用いて表すと$\boxed{\ \ ウ\ \ }$となる。
(2)台形OACBが円に内接するとき、$k$=$\boxed{\ \ エ\ \ }$である。
(3)$k$=$\boxed{\ \ エ\ \ }$であるとし、直線OBと直線ACの交点をDとする。△OBPと△ACPの面積が等しい、という条件を満たす空間内の点P全体は、点Dを通る2つの平面上の点全体から点Dを除いたものとなる。これら2つの平面のうち、線分OAと交わらないものを$\alpha$とする。点Oから平面$\alpha$に下ろした垂線の長さは$\boxed{\ \ オ\ \ }$である。
この動画を見る 

福田のおもしろ数学542〜定積分の値の評価

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{1}{3}\lt \displaystyle \int_{0}^{1}x^{(\sin x+\cos x)^2}dx \lt \dfrac{1}{2}$

を証明して下さい。
    
この動画を見る 

青山学院大 三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sin^2\theta-k\sin\theta+\displaystyle \frac{1}{4}=0$
$(0 \leqq \theta \lt \pi)$

解の個数を求めよ

出典:2009年青山学院大学 過去問
この動画を見る 

大阪教育大 指数関数の最小値 解の個数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#微分法と積分法#恒等式・等式・不等式の証明#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'03大阪教育大学過去問題
x,a実数
$f(x)=4^x-6・2^x-6・2^{-x}+4^{-x}$
(1)f(x)の最小値
(2)f(x)=aとなるようなxの個数
この動画を見る 

#弘前大学2024#定積分_56

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#弘前大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\log 2} \dfrac{dx}{2e^x-3e^{-x}-5}$を解け.

弘前大学過去問
この動画を見る 
PAGE TOP