【高校数学】 数B-21 位置ベクトル② - 質問解決D.B.(データベース)

【高校数学】 数B-21 位置ベクトル②

問題文全文(内容文):
◎△ABCの辺AB、BCを3:2に内分する点をそれぞれD、E、
ACの中点をF、△ABCの重心をGとする。
次のベクトルを$\overrightarrow{ AB }=\overrightarrow{ b },\overrightarrow{ AC }=\overrightarrow{ c }$で表そう。

①$\overrightarrow{ AD }$

②$\overrightarrow{ AE }$

③$\overrightarrow{ AF }$

④$\overrightarrow{ AG }$

⑤$\overrightarrow{ BC }$

⑥$\overrightarrow{ FG }$

※図は動画内参照
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△ABCの辺AB、BCを3:2に内分する点をそれぞれD、E、
ACの中点をF、△ABCの重心をGとする。
次のベクトルを$\overrightarrow{ AB }=\overrightarrow{ b },\overrightarrow{ AC }=\overrightarrow{ c }$で表そう。

①$\overrightarrow{ AD }$

②$\overrightarrow{ AE }$

③$\overrightarrow{ AF }$

④$\overrightarrow{ AG }$

⑤$\overrightarrow{ BC }$

⑥$\overrightarrow{ FG }$

※図は動画内参照
投稿日:2015.12.12

<関連動画>

【数B】ベクトル:ベクトルの基本⑮直線の方程式を求める

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(3,5),方向ベクトルd=(1,2)のとき直線の方程式を求めよ。
A(1,3),B(2,4)のとき2点を通る直線の方程式を求めよ。
A(3,2),法線ベクトルd=(4,5)のとき直線の方程式を求めよ。
この動画を見る 

大学入試問題#899「初めてのベクトルやってみた」 #北海道大学(2024)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: ますただ
問題文全文(内容文):
三角形$OAB$が
$|\overrightarrow{ OA }|=3,$ $|\overrightarrow{ AB }|=5,$ $\overrightarrow{ OA }.\overrightarrow{ AB }=10$
を満たしているとする。
三角形$OAB$の内接円の中心を$I$とし、この内接円と辺$OA$の接点を$H$とする。

1.辺$OB$の長さを求めよ。
2.$\overrightarrow{ OI }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。
3.$\overrightarrow{ HI }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。

出典:2024年北海道大学
この動画を見る 

福田の数学〜東京工業大学2023年理系第5問(PART2)〜4直線に接する球面の決定

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。

2023東京工業大学理系過去問
この動画を見る 

京都大 図形(基礎)高校数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#京都大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
1辺の長さが1の正四面体OABCのBC上に点PをとりBPの長さをxとする
(1)OAPをxで表せ。
(2)OAPの最小値

*図は動画内参照
この動画を見る 

福田の数学〜九州大学2025文系第2問〜円周上の2点との距離の2乗の和の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#三角関数#三角関数とグラフ#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

半径$1$の円周$C$上の$2$点$A,B$は

$AB=\sqrt3$をみたすとする。

点$P$が円周$C$上を動くとき、

$AP^2+BP^2$の最大値を求めよ。

$2025$年九州大学文系過去問題
この動画を見る 
PAGE TOP