問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$A(\alpha),B(\beta),C(\gamma)$が
$3\alpha^2+\beta^2+\gamma^2-3\alpha\beta+\beta\gamma-3\alpha\gamma=0$
を満たす。$\triangle ABC$はどのような三角形か。
${\Large\boxed{1}}$ 異なる3点$A(\alpha),B(\beta),C(\gamma)$が
$3\alpha^2+\beta^2+\gamma^2-3\alpha\beta+\beta\gamma-3\alpha\gamma=0$
を満たす。$\triangle ABC$はどのような三角形か。
単元:
#複素数平面#図形への応用#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$A(\alpha),B(\beta),C(\gamma)$が
$3\alpha^2+\beta^2+\gamma^2-3\alpha\beta+\beta\gamma-3\alpha\gamma=0$
を満たす。$\triangle ABC$はどのような三角形か。
${\Large\boxed{1}}$ 異なる3点$A(\alpha),B(\beta),C(\gamma)$が
$3\alpha^2+\beta^2+\gamma^2-3\alpha\beta+\beta\gamma-3\alpha\gamma=0$
を満たす。$\triangle ABC$はどのような三角形か。
投稿日:2018.06.01