大学入試問題#614「これは、時間内で解くのは大変かもしれない」 立命館大学(2023) #曲線の長さ - 質問解決D.B.(データベース)

大学入試問題#614「これは、時間内で解くのは大変かもしれない」 立命館大学(2023) #曲線の長さ

問題文全文(内容文):
次の曲線の長さ$L$を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\cos^4\theta \\
y=\sin^4\theta
\end{array}
\right.
\end{eqnarray}$
$(0 \leqq \theta \leqq \displaystyle \frac{\pi}{2})$

出典:2023年立命館大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#立命館大学
指導講師: ますただ
問題文全文(内容文):
次の曲線の長さ$L$を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\cos^4\theta \\
y=\sin^4\theta
\end{array}
\right.
\end{eqnarray}$
$(0 \leqq \theta \leqq \displaystyle \frac{\pi}{2})$

出典:2023年立命館大学 入試問題
投稿日:2023.08.12

<関連動画>

約数 國學院高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
60の正の約数をすべてかけると$60^▢$と表せる

国学院高等学校
この動画を見る 

三重大 対数と二次関数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha \gt 0$とする.
$f(x)=\log_3 \left(-\dfrac{1}{2}x^2+\dfrac{1}{2}\alpha x+9 \right)$

$f(x)$が整数となる$x$が$0\leqq x\leqq \alpha$の範囲でちょうど$6$個あるような$\alpha$の範囲を求めよ.

三重大過去問
この動画を見る 

ざ・解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+2x^2-2x-1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\dfrac{1}{(\delta-3)(\beta-3)},\dfrac{1}{(\delta-3)(\delta-3)},\dfrac{1}{(\delta-3)(\alpha-3)}$を解にもつ3次方程式を求めよ.

この動画を見る 

#会津大学(2009) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} (3x^3-1)log\ x\ dx$

出典:2009年会津大学
この動画を見る 

福田の数学〜京都大学2022年理系第5問〜方程式の解と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#解と判別式・解と係数の関係#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=\cos^3x$ $(0 \leqq x \leqq \frac{\pi}{2})$,x軸およびy軸で囲まれる図形の面s系をS
とする。$0 \lt t \lt \frac{\pi}{2}$とし、C上の点Q$(t,\cos^3t)$と原点O,およびP$(t,o),R(0,\cos^3t)$
を頂点にもつ長方形OPQRの面積をf(t)とする。このとき、次の問いに答えよ。
(1)Sを求めよ。
(2)$f(t)$は最大値をただ一つのtでとることを示せ。そのときのtを$\alpha$とすると、
$f(\alpha)=\frac{\cos^4\alpha}{3\sin\alpha}$ であることを示せ。
(3)$\frac{f(\alpha)}{S} \lt \frac{9}{16}$ を示せ。

2022京都大学理系過去問
この動画を見る 
PAGE TOP