大学入試問題#614「これは、時間内で解くのは大変かもしれない」 立命館大学(2023) #曲線の長さ - 質問解決D.B.(データベース)

大学入試問題#614「これは、時間内で解くのは大変かもしれない」 立命館大学(2023) #曲線の長さ

問題文全文(内容文):
次の曲線の長さ$L$を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\cos^4\theta \\
y=\sin^4\theta
\end{array}
\right.
\end{eqnarray}$
$(0 \leqq \theta \leqq \displaystyle \frac{\pi}{2})$

出典:2023年立命館大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#立命館大学
指導講師: ますただ
問題文全文(内容文):
次の曲線の長さ$L$を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\cos^4\theta \\
y=\sin^4\theta
\end{array}
\right.
\end{eqnarray}$
$(0 \leqq \theta \leqq \displaystyle \frac{\pi}{2})$

出典:2023年立命館大学 入試問題
投稿日:2023.08.12

<関連動画>

【数学Ⅱ/微分】接線の方程式②

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
点$(-1,-4)$から、曲線$y=x^2-1$に引いた接線の方程式を求めよ。
この動画を見る 

福田の数学〜早稲田大学理工学部2025第2問〜領域に含まれる三角形の面積の最大値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$xy$平面上で、

連立不等式

$0\lt x \leqq 1,0\leqq y \leqq \log\dfrac{1}{x}$

で定まる領域と$y$軸の

$y\geqq 0$の部分を合わせた図形を$D$とする。

$D$に含まれる三角形の最大値を求めよ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 

京大!?教科書レベル!?解けますよね?【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
8.94^18の整数部分は何桁か。また、最高位からの2桁の数字を求めよ。例えば、12345.6789の最高位の2桁は12を指す。
ただし、0.951<log10_8.94<0.952, 0.113<log10_1.3<0.114, 0.146<log10_1.4<0.147 であることは用いてよい。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題056〜神戸大学2017年度文系第1問〜3次関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ tを正の実数とする。$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$とおく。
以下の問いに答えよ。
(1)2t^3-3t^2+1 を因数分解せよ。
(2)$f(x)$が極小値0をもつことを示せ。
(3)$-1 \leqq x \leqq 2$における$f(x)$の最小値$m$と最大値$M$をtの式で表せ。

2017神戸大学文系過去問
この動画を見る 

積分の基本

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-7x^2+14x-8$と$x$軸とで囲まれる2つの部分の面積の和を求めよ.
この動画を見る 
PAGE TOP