小樽商科大 整数問題 - 質問解決D.B.(データベース)

小樽商科大 整数問題

問題文全文(内容文):
$\dfrac{2n-2}{n^2+2n+2}$が整数となる整数$n$を求めよ.

2018小樽商科大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{2n-2}{n^2+2n+2}$が整数となる整数$n$を求めよ.

2018小樽商科大過去問
投稿日:2020.08.14

<関連動画>

整数問題の難問!感覚が大事になる問題です

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
6・3^3x +1=7・5^2xを満たす0以上の整数xを求めよ。
この動画を見る 

【小学校の学習範囲から始まって】整数:市川高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$A-2B-2G+L=2021$のとき,自然数の組$(A,B)$をすべて求めよ.
※$G$は1でない自然数とする.

市川高校過去問
この動画を見る 

福田の数学〜一橋大学2025文系第1問〜正の約数の個数と関数の最大値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

正の整数$n$に対し、$n$の正の約数の個数を

$d(n)$とする。

たとえば、$6$の正の約数は$1,2,3,6$の$4$個なので、

$d(6)=4$である。また、

$f(n)=\dfrac{d(n)}{\sqrt n}$

とする。

(1)$f(2025)$を求めよ。

(2)素数$p$と正の整数$k$の組で

$f(p^k)\leqq f(p^{k+1})$を満たすものを求めよ。

(3)$f(n)$の最大値と、そのときの$n$を求めよ。

$2025$年一橋大学文系過去問題
この動画を見る 

灘中 ちょっと合同式

アイキャッチ画像
単元: #算数(中学受験)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#過去問解説(学校別)#数学(高校生)#灘中学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
連続した5つの整数の積が2441880 最初の整数は?

出典:2002年灘中学校 過去問
この動画を見る 

ラ・サール高校の整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,b,c,dは0または正の整数。
\begin{eqnarray}
\left\{
\begin{array}{l}
ad + bc = 2 \\
a + b + c + d = 4
\end{array}
\right.
\end{eqnarray}
を満たす(a,b,c,d)の組はいくつか?

ラ・サール学園
この動画を見る 
PAGE TOP