福田の数学〜早稲田大学理工学部2025第3問〜完全順列と漸化式 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学理工学部2025第3問〜完全順列と漸化式

問題文全文(内容文):

$\boxed{3}$

$1$から$n$までの異なる自然数が$1$つずつ書かれた

$n$枚のカードが一列に並んでいる。

このとき、

どのカードも現在とは異なる位置に移動するよう

並べ替えてできる順列の総数を$a_n$で表し、

並べ方の総数$n!$に閉める$a_n$の割合を$p_n$で表す。

例えば、$a_1=0,p_1=0,a_2=1,p_2=\dfrac{1}{2},$

$a_3=2,p_3=\dfrac{1}{3}$である。

(1)$a_4$の値を求めよ。

(2)$n\geqq 3$のとき、$a_n$を$a_{n-1}$と

$a_{n-2}$を用いて表せ。

(3)$n\geqq 2$のとき、$p_n-p_{n-1}$を

$n$を用いて表せ。

$2025$年早稲田大学理工学部過去問題
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$1$から$n$までの異なる自然数が$1$つずつ書かれた

$n$枚のカードが一列に並んでいる。

このとき、

どのカードも現在とは異なる位置に移動するよう

並べ替えてできる順列の総数を$a_n$で表し、

並べ方の総数$n!$に閉める$a_n$の割合を$p_n$で表す。

例えば、$a_1=0,p_1=0,a_2=1,p_2=\dfrac{1}{2},$

$a_3=2,p_3=\dfrac{1}{3}$である。

(1)$a_4$の値を求めよ。

(2)$n\geqq 3$のとき、$a_n$を$a_{n-1}$と

$a_{n-2}$を用いて表せ。

(3)$n\geqq 2$のとき、$p_n-p_{n-1}$を

$n$を用いて表せ。

$2025$年早稲田大学理工学部過去問題
投稿日:2025.04.22

<関連動画>

北海道大 等比複素数列 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
北海道大学過去問題
数列{$Z_n$}は初項48、公比$\frac{1}{4}(\sqrt{6}+\sqrt{2}i)$の等比複素数列である。
この数列の項のうち実数のみの項を並べた数列を{$a_n$}
(1)$Z_4$
(2)$a_3$
(3)$\displaystyle\sum_{n=1}^\infty a_n$
この動画を見る 

【数B】数列:2019年第2回高2K塾記述模試の第6問を解いてみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{${a_n}$}$(n=1,2,3,...)$は初項-8、公差4の等差数列であり、数列{$b_n$}$(n=1,2,3,...)$は初項から第n項までの和がS[n]=3^n/2(n=1,2,3,...)で与えられる数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの和を求めよ。
(2)$\displaystyle \sum_{k=1}^{n}(a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。
(4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_kb_k \vert$を求めよ。
この動画を見る 

一橋大 数学的帰納法 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2009一橋大学過去問題
$α={}^3\sqrt{7+5\sqrt{2}}$ $\quad$ $β={}^3\sqrt{7-5\sqrt{2}}$
n自然数
$α^n+β^n$は自然数であることを示せ。
この動画を見る 

東京薬科大 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1,11,111,1111,…$
第$n$項と初項から第$n$項までの和を求めよ

出典:東京薬科大学 過去問
この動画を見る 

【数B】数列:1,6,15,28,45,…の一般項を求めよ。階差数列の解法紹介!!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列:1,6,15,28,45,…の一般項を求めよ。
この動画を見る 
PAGE TOP