【受験対策】 数学-関数⑧ - 質問解決D.B.(データベース)

【受験対策】  数学-関数⑧

問題文全文(内容文):
右の図のように、3点、A(4.8), B(-4.0), C(2.0)があります。直線又は2点、A、Bを通る直線で、直線mは2点、A、Cを通る直線です。また、直線nは、関数$y=-\displaystyle \frac{1}{4}x+\displaystyle \frac{19}{4}$のグラフで、線分ACの中点、Dを通り、直線mと垂直に交わっています。

①直線ℓの式は?

②直線mの式は?

③直線nとX軸との交点をEとするとき、△ADEの面積は?

④3点A.B.Cを通る円の中心の座標を求めよう。
※図は動画内参照
単元: #数Ⅱ#図形と方程式#点と直線
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、3点、A(4.8), B(-4.0), C(2.0)があります。直線又は2点、A、Bを通る直線で、直線mは2点、A、Cを通る直線です。また、直線nは、関数$y=-\displaystyle \frac{1}{4}x+\displaystyle \frac{19}{4}$のグラフで、線分ACの中点、Dを通り、直線mと垂直に交わっています。

①直線ℓの式は?

②直線mの式は?

③直線nとX軸との交点をEとするとき、△ADEの面積は?

④3点A.B.Cを通る円の中心の座標を求めよう。
※図は動画内参照
投稿日:2014.01.17

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第1問(2)〜折れ線の最小と内接円の半径

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#三角関数#点と直線#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)aは正の定数とする。原点をOとするxy平面上に直線l:y=$\frac{2}{3}$xと2点A(0,a), B(17,20)がある。直線l上にとった動点Pと2点A,Bそれぞれを線分で結び、2つの線分の長さの和AP+BPが最小となったとき、$\angle APO$=45°であった。AP+BPが最小であるとき、直線BPを表す方程式はy=$\boxed{\ \ ウ\ \ }$であり、三角形ABPの内接円の半径は$\boxed{\ \ エ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

数学諦めて7年!私文数学超苦手女子が2点を通る直線の式が暗算数秒で出せるのか?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2点を通る直線の式 解説動画です
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(1)〜図形の証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#式と証明#平面上のベクトル#図形と計量#三角比への応用(正弦・余弦・面積)#図形と方程式#恒等式・等式・不等式の証明#点と直線#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)三角形ABCにおいて辺BCを4:3に内分する点をDとするとき、等式
$\boxed{\ \ あ\ \ }$$AB^2$+$\boxed{\ \ い\ \ }$$AC^2$=$AD^2$+$\boxed{\ \ う\ \ }$$BD^2$
が成り立つ。

203慶應義塾大学医学部過去問
この動画を見る 

【数Ⅱ】図形と方程式:2x+3y=6に関して、y=2x に対称な直線の求め方(前編)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2x+3y=6に関して、y=2x に対称な直線を求めよ。
この動画を見る 

0.5分で要点が分かる!「二次関数と直線」の動画!~全国入試問題解法 #shorts #数学 #入試問題

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#図形と方程式#点と直線#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
放物線$y=a^2x^2$と直線$y=ax+2$が異なる2点$A,B$で交わっている.
ただし,$a \gt b$とする.
$\triangle OAB$の面積が15となる$a$の値を求めよ.

ノートルダム女学院高校過去問
この動画を見る 
PAGE TOP