【数Ⅲ-125】微分の不等式への応用① - 質問解決D.B.(データベース)

【数Ⅲ-125】微分の不等式への応用①

問題文全文(内容文):
数Ⅲ(微分の不等式への応用①)

①$x\gt1$のとき、不等式$2\sqrt{x}\gt\log x$を証明せよ

➁$x\gt1$のとき、不等式$\log x\leqq\frac{x}{e}$を証明せよ
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の不等式への応用①)

①$x\gt1$のとき、不等式$2\sqrt{x}\gt\log x$を証明せよ

➁$x\gt1$のとき、不等式$\log x\leqq\frac{x}{e}$を証明せよ
投稿日:2019.04.02

<関連動画>

福田のわかった数学〜高校3年生理系099〜不等式の証明(6)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(6)\hspace{170pt}\\
0 \lt a \lt b \lt \frac{\pi}{2}のとき、\frac{a}{b} \lt \frac{\sin a}{\sin b}が成り立つことを証明せよ。
\end{eqnarray}
この動画を見る 

福田の数学〜大阪大学2023年文系第2問〜対数関数と3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 正の実数a, xに対して
y=$(\log_{\frac{1}{2}}x)^3$+$a\log_{\sqrt 2}x$$(\log_4x^3)$
とする。
(1)t=$\log_2x$とするとき、yをa, tを用いて表せ。
(2)xが$\frac{1}{2}$≦x≦8の範囲を動くとき、yの最大値Mをaを用いて表せ。

2023大阪大学文系過去問
この動画を見る 

滋賀大 整式の累乗の微分 公式証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#滋賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'84滋賀大学過去問題
$\frac{d}{dx} \{ f(x) \}^n=n \{ f(x) \}^{n-1}f'(x)$を証明せよ。
(f(x)は0でないxの整式、n自然数)
この動画を見る 

福田の数学〜東北大学2023年文系第3問〜軸の動く最大最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ aを実数とし、2次関数f(x)=$x^2$+2$ax$-3 を考える。実数xがa≦x≦a+3 の範囲を動くときのf(x)の最大値および最小値を、それぞれM(a), m(a)とする。
以下の問いに答えよ。
(1)M(a)をaを用いて表せ。
(2)m(a)をaを用いて表せ。
(3)aがすべての実数を動くとき、m(a)の最小値を求めよ。

2023東北大学文系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系085〜グラフを描こう(7)媒介変数表示のグラフ

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(7)\\
\\
\left\{
\begin{array}{1}
x=t^2+1\\
y=2-t-t^2
\end{array}
\right.  (-2 \leqq t \leqq 1)\\
\\
のグラフを描け。
凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る 
PAGE TOP