問題文全文(内容文):
数Ⅲ(微分の不等式への応用①)
①$x\gt1$のとき、不等式$2\sqrt{x}\gt\log x$を証明せよ
➁$x\gt1$のとき、不等式$\log x\leqq\frac{x}{e}$を証明せよ
数Ⅲ(微分の不等式への応用①)
①$x\gt1$のとき、不等式$2\sqrt{x}\gt\log x$を証明せよ
➁$x\gt1$のとき、不等式$\log x\leqq\frac{x}{e}$を証明せよ
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の不等式への応用①)
①$x\gt1$のとき、不等式$2\sqrt{x}\gt\log x$を証明せよ
➁$x\gt1$のとき、不等式$\log x\leqq\frac{x}{e}$を証明せよ
数Ⅲ(微分の不等式への応用①)
①$x\gt1$のとき、不等式$2\sqrt{x}\gt\log x$を証明せよ
➁$x\gt1$のとき、不等式$\log x\leqq\frac{x}{e}$を証明せよ
投稿日:2019.04.02