【数学I】データの分析を極限までまとめた動画【語呂合わせ】 - 質問解決D.B.(データベース)

【数学I】データの分析を極限までまとめた動画【語呂合わせ】

問題文全文(内容文):
【数学I】データの分析まとめ動画です
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学I】データの分析まとめ動画です
投稿日:2019.04.21

<関連動画>

図形と計量 三角比応用 二か所からの測量【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\angle C=90°$ である直角三角形ABCにおいて,$\angle A=\theta, AB=k$ とする。頂点Cから辺ABに下ろした垂線を CD とするとき,次の線分の長さを$k,\theta$を用いて表せ。(1) $BC$ (2) $AC$ (3) $AD$ (4) $CD$ (5) $BD$
この動画を見る 

【無理数とは!】平方根(有理数と無理数)後編:教科書順で内容確認~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平方根(有理数と無理数)に関して解説していきます.
この動画を見る 

慶應義塾 二次式 高校数学 Mathematics Japanese university entrance exa

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#式と証明#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
a,b,cは実数
$v(y)=acy^2+(ab+bc)y+a^2+b^2+c^2-2ac$
$-2 \leqq y \leqq 2$の範囲で$v(y) \geqq 0$であることを示せ
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第4問(1)〜条件の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$(1)関数$f(x)$に対する以下の条件(P)を考える。
$(P): f(x) \gt 3$を満たす5以上の自然数nが存在する。
条件(P)の否定として正しいものを以下の選択肢からすべて選べ。
$(\textrm{a})f(n) \leqq 3$を満たす5以上の自然数nが存在する。
$(\textrm{b})f(n) \gt 3$を満たす5未満の自然数nが存在する。
$(\textrm{c})f(n) \leqq 3$を満たす5未満の自然数nが存在する。
$(\textrm{d})n$が5以上の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{e})n$が5未満の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{f})n$が5未満の自然数ならば$f(n) \gt 3$が成り立つ。
$(\textrm{g})f(n) \gt 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{h})f(n) \leqq 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{i})f(n) \leqq 3$が5未満の全ての自然数nに対して成り立つ。

2021上智大学文系過去問
この動画を見る 

東北大 二次関数と接線 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C_{1}:y-x^2$
$C_{2}:y=-x^2+2ax-a$

(1)
$C_{1}$と$C_{2}$が共有点をもたない$a$の範囲


(2)
(1)のとき、$C_{1}C_{2}$の両方に接する直線が2本あることを示せ


(3)
(2)の2直線の交点の描く図形を図表せよ

出典:2015年東北大学 過去問
この動画を見る 
PAGE TOP