記号は大学数学でも頑張れば中学生でもできる - 質問解決D.B.(データベース)

記号は大学数学でも頑張れば中学生でもできる

問題文全文(内容文):
$\dfrac{2^3-1}{2^3+1}・\dfrac{3^3-1}{3^3+1}・\dfrac{4^3-1}{4^3+1}・\dfrac{5^3-1}{5^3+1}…$
$\displaystyle \prod_{n=2}^{\infty} \dfrac{n^3-1}{n^3+1}=?$
これを解け.
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{2^3-1}{2^3+1}・\dfrac{3^3-1}{3^3+1}・\dfrac{4^3-1}{4^3+1}・\dfrac{5^3-1}{5^3+1}…$
$\displaystyle \prod_{n=2}^{\infty} \dfrac{n^3-1}{n^3+1}=?$
これを解け.
投稿日:2022.09.27

<関連動画>

福田の数学〜早稲田大学2021年教育学部第4問〜三角形の個数を数える

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}} $
1辺の長さが$1$の正三角形を下図(※動画参照)のように積んでいく。図の中には大きさの異なったいくつかの正三角形が含まれているが、底辺が下側にあるものを「上向きの正三角形」、底辺が上側にあるものを「下向きを正三角形」とよぶことにする。例えば、この図(※動画参照)は1辺の長さが1の正三角形を4段積んだものであり、1辺の長さが1の上向きの正三角形は10個あり、1辺の長さが2の上向き正三角形は6個ある。
また1辺の長さが1の下向きの正三角形は6個ある。上向きの正三角形の総数は20であり、下向きの正三角形の総数は7である。こうした正三角形の個数に関して次の問いに答えよ。
(1)1辺の長さが1の正三角形を$5$段積んだとき、上向きと下向きとを合わせた正三角形の総数を求めよ。
(2)1辺の長さが1の正三角形を$n$段(ただし$n$は自然数)積んだとき、上向きの正三角形の総数を求めよ。
(3)1辺の長さが1の正三角形を$n$段(ただし$n$は自然数)積んだとき、下向きの正三角形の総数を求めよ。
この動画を見る 

福田の数学〜京都大学2025文系第3問〜確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$n$は正の整数とする。

$1$枚の硬貨を投げ、

表が出たら$1$、裏が出たら$2$と記録する。

この試行を$n$回繰り返し、

記録された順に数字を左から

並べて$n$桁の数$X$を作る。

ただし、数の表し方は十進法とする。

このとき、$X$が$6$で割り切れる確率を求めよ。

$2025$年京都大学文系過去問題
この動画を見る 

19奈良県教員採用試験(数学:3番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
3⃣$S_n=3n^2+4n$
(1)$a_n$
(2)$a_{2018}+a_{2019}+a_{2020}$
(3)$\displaystyle \sum_{k=1}^n a_k a_{k+1}$
この動画を見る 

【高校数学】 数B-80 いろいろな数列の和①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数列の初項から第$n$項までの和を求めよう.

①$3,5・2,7・2^2,9・2^3・・・$

②$x\neq 1$のとき,$1,3x,5x^2,7x^3,・・・$
この動画を見る 

【数学B/数列】漸化式の基本

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のように定義される数列${a_n}$の一般項$a_n$を求めよ。
(1)
$a_1=1,$  $a_{n+1}=a_n+3$

(2)
$a_1=2,$  $a_{n+1}=3a_n$

(3)
$a_1=-1,$  $a_{n+1}=a_n+6n-2$

(4)
$a_1=1,$  $a_{n+1}=a_n+2^{n-1}$
この動画を見る 
PAGE TOP