記号は大学数学でも頑張れば中学生でもできる - 質問解決D.B.(データベース)

記号は大学数学でも頑張れば中学生でもできる

問題文全文(内容文):
$\dfrac{2^3-1}{2^3+1}・\dfrac{3^3-1}{3^3+1}・\dfrac{4^3-1}{4^3+1}・\dfrac{5^3-1}{5^3+1}…$
$\displaystyle \prod_{n=2}^{\infty} \dfrac{n^3-1}{n^3+1}=?$
これを解け.
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{2^3-1}{2^3+1}・\dfrac{3^3-1}{3^3+1}・\dfrac{4^3-1}{4^3+1}・\dfrac{5^3-1}{5^3+1}…$
$\displaystyle \prod_{n=2}^{\infty} \dfrac{n^3-1}{n^3+1}=?$
これを解け.
投稿日:2022.09.27

<関連動画>

弘前大(医) 漸化式 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#弘前大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
$a_1=a_2=1$
$a_{n+1}= a_n+2 \displaystyle\sum_{k=1}^{n-1}a_k(n \geqq 2)$
数列$ \{ a_n \} $の一般項$a_n$を求めよ。
この動画を見る 

289 フィボナッチ数列をプログラムする!:100を超えるのは何項目?#shorts

アイキャッチ画像
単元: #情報Ⅰ(高校生)#数列#漸化式#数学(高校生)#プログラミング#プログラムによる動的シミュレーション#数B
指導講師: めいちゃんねる
問題文全文(内容文):
289 フィボナッチ数列をプログラムする!:100を超えるのは何項目?#shorts
【問題文】次のプログラムの実行結果を答えよ。
※プログラムは動画内参照
この動画を見る 

福田の数学〜東北大学2025理系第2問〜漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

正の実数からなる$2$つの数列$\{x_n\},\{y_n\}$を

次のように定める。

$x_1=2,y_1=\dfrac{1}{2},x_{n+1}=(y_n)^5・(y_n)^2,$

$ \hspace{ 80pt } y_{n+1}=x_n・(y_n)^6$

このとき、以下の問いに答えよ。

(1)$k$を実数とする。

$a_n=\log_2 x_n,b_n=\log_2 y_n$とおく。

このとき、$\{a_n+kb_n\}$が等位数列になるような

$k$の値をすべて求めよ。

(2)数列$\{x_n\}$の一般項を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

大学入試問題#463「ええ問題や~~」 信州大学 理・医 (2016) #積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (1-x^2)^n dx$
$=\displaystyle \frac{4^n(n!)^2}{(2n+1)!}$を示せ

出典:2016年信州大学医学部 入試問題
この動画を見る 

愛媛 香川 大分 整式の剰余 整数 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#愛媛大学#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
愛媛大学過去問題
$x^{2009}$を$x^2+1$で割った時の余りを求めよ。

香川大学
$6n^5-15n^4+10n^3-n$は30の倍数であることを示せ。

大分大学
$a_1=2,a_{n+1}=4a_n-s_n$のときの一般項を求めよ。
$s_n=\displaystyle\sum_{k=1}^n a_k$である。
この動画を見る 
PAGE TOP