整式の剰余 - 質問解決D.B.(データベース)

整式の剰余

問題文全文(内容文):
$x^{2024}+ax^6+bx^4+cx+2\ $が
$x^4+x^2+1$で割り切れるような整数a,b,cを求めよ

単元: #数Ⅱ#式と証明#複素数と方程式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2024}+ax^6+bx^4+cx+2\ $が
$x^4+x^2+1$で割り切れるような整数a,b,cを求めよ

投稿日:2023.12.23

<関連動画>

【数Ⅱ】多項式の割り算【無理数の代入をかんたんに計算!】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)\begin{array}{r}7\enclose{longdiv}{95\phantom{0}} \\[-3pt]\end{array}
  これを解け.
(2)f(x)=x^3+2x^2+3x+6とおく.
f(1+\sqrt2)を求めよ.$
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第2問〜集合の要素と包含関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 実数からなる集合A,B,Cを次のように定義する。ただし、a \gt 0\\
A=\left\{x |\ |x| \lt a \right\}\\
B=\left\{x |\ (x+2)(x-5)(x^2+2x-7) \leqq 0 \right\}\\
C=\left\{x |\ 3^{\frac{x}{3}} \leqq \frac{1}{3}(x+4) \right\}\\
\\
(1)A \cap Bが空集合であるための必要十分条件はa \boxed{\ \ お\ \ } \ \boxed{\ \ \alpha\ \ }である。\\
(2)A \supset Bであるための必要十分条件はa \boxed{\ \ か\ \ } \ \boxed{\ \ \beta\ \ }である。\\
\\
\boxed{\ \ お\ \ },\ \boxed{\ \ か\ \ }の選択肢:(\textrm{a})= (\textrm{b})\lt  (\textrm{c})\leqq  (\textrm{d})\gt  (\textrm{e})\geqq (\textrm{f})≠  \\
\boxed{\ \ \alpha\ \ },\ \boxed{\ \ \beta\ \ }の選択肢:(\textrm{a})1 (\textrm{b})2  (\textrm{c})3  (\textrm{d})5  (\textrm{e})7 (\textrm{f})10  \\
(\textrm{g})-1+2\sqrt2 (\textrm{h})1+2\sqrt2 (\textrm{i})-2+\sqrt7 (\textrm{j})2+\sqrt7\\
\\
(3)-1 \boxed{\ \ き\ \ }Cであり、5 \boxed{\ \ く\ \ }Cである。\\
\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ }の選択肢:(\textrm{a})\in (\textrm{b})\notin (\textrm{c})\ni (\textrm{d})∋ (\textrm{e})= (\textrm{f})\subset (\textrm{g})\supset\\
(4)Cに属する整数は\boxed{\ \ オ\ \ }個ある。\\
(5)A \subset Cとなるaのうち、整数で最大のものは\boxed{\ \ カ\ \ }である。\\
(6)A \supset Cとなるaのうち、整数で最小のものは\boxed{\ \ キ\ \ }である。
\end{eqnarray}

2021上智大学理系過去問
この動画を見る 

東大 漸化式 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^{n+1}$を$x^2-x-1$で割った余りを$a_n x+b_n$とする.

(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
a_{n+1}=a_n+b_n \\
b_{n+1}=a_n
\end{array}
\right.
\end{eqnarray}$ を示せ.

(2)$a_n$と$b_n$は自然数で,互いに素であることを示せ.

東大過去問
この動画を見る 

中国Jr 数学Olympic あっと驚く解法も

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#式と証明#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^5=1,x \neq 1$とするとき,
$\dfrac{x}{1+x^2}+\dfrac{x^2}{1+x^4}+\dfrac{x^3}{1+x^6}+\dfrac{x^4}{1+x^8}$の値を求めよ.

中国jr数学オリンピック過去問
この動画を見る 

福田のわかった数学〜高校3年生理系097〜不等式の証明(4)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(4)\\
(x+2)\log(x+1) \geqq 2x (x \geqq 0)を証明せよ。\\
\end{eqnarray}
この動画を見る 
PAGE TOP