西暦"2023"を含む入試予想問題(その4)~全国入試問題解法 - 質問解決D.B.(データベース)

西暦"2023"を含む入試予想問題(その4)~全国入試問題解法

問題文全文(内容文):
$N$の整数部分が$ N=\sqrt{2023+x}$とする.
整数$x$はいくつあるか.
単元: #数学(中学生)#中3数学#平方根#数と式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$N$の整数部分が$ N=\sqrt{2023+x}$とする.
整数$x$はいくつあるか.
投稿日:2023.01.04

<関連動画>

数と式 集合の考え方【いつものシミズ君がていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$U={1,2,3,4,5,6,7,8,9}$を全体集合とする。$U$の部分集合A、Bについて
$A∩B={2}$ $A$(補集合)$∩B={4,6,8}$ $A$(補集合)$∩B$(補集合)$={1.9}$
であるとき、次の$∩$を求めよ。
(1)$A∪B$
(2)$B$
(3)$A∩B$(補集合)

$U={x|1≦x≦10、xは整数}$を全体集合とする。$U$の部分集合
$A={1,2,3,4,8},B={3,4,5,6},C{2,3,6,7}$
について、次の集合を求めよ。
(1)$A∩B∩C$
(2)$A∪B∪C$
(3)$A∩B∩C$(補集合)
(4)$A$(補集合)$∩B∩C$(補集合)
(5)$(A∩B∩C)$(補集合)
(6)$(A∪C)∩B$(補集合)

$A={1、3、3a-2}$, $B={-5、a+2、a^2-2a+1}$,$A∩B={1、4}$のとき
定数aの値と和集合$A∪B$を求めよ。
この動画を見る 

因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ (x+y)^7-(x^7+y^7)$
これを因数分解せよ.
この動画を見る 

総合問題2020

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(5+\sqrt{ 26 })^{2020}$の1の位の数を求めよ
この動画を見る 

有名な高校入試解説できる?

アイキャッチ画像
単元: #中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#その他#その他#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$2^{ 56 }$と$5^{ 24 }$ どちらが大きい?
この動画を見る 

大阪市立大 無理数の証明

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$m,n$を自然数とし,$m\gt n$とする.$2^{\frac{n}{m}}$は無理数であることを示せ.
(2)$2^{\frac{1}{3}}$は有理数係数の2次方程式の解にならないことを示せ.

1993大阪市立大過去問
この動画を見る 
PAGE TOP