【高校数学】 数Ⅱ-44 剰余の定理と因数定理③ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-44 剰余の定理と因数定理③

問題文全文(内容文):
①$x^2+ax+b$が、$x+1$で割ると1余り、$x-1$で割ると3余るとき定数a,bの値を求めよう。

②整式$P(x)$を$x-1$で割ると3余り、$2x+1$で割ると4余る。$P(x)$を$(x-1)(2x+1)$で割ったときの余りを求めよう。
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2+ax+b$が、$x+1$で割ると1余り、$x-1$で割ると3余るとき定数a,bの値を求めよう。

②整式$P(x)$を$x-1$で割ると3余り、$2x+1$で割ると4余る。$P(x)$を$(x-1)(2x+1)$で割ったときの余りを求めよう。
投稿日:2015.06.03

<関連動画>

大阪教育大 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=1+\sqrt{ 3 }i,\beta=1-\sqrt{ 3 }i$

(1)
$\displaystyle \frac{1}{\alpha^2}+\displaystyle \frac{1}{\beta^2}$の値を求めよ

(2)
$\displaystyle \frac{\beta^8}{\alpha^7}$の値を求めよ

(3)
$z^4=-8\beta$を満たす$z$を求めよ

出典:1999年大阪教育大学 過去問
この動画を見る 

12大阪府教員採用試験(数学:1 2 指数の方程式)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(2)$
$10^x=50^{y-1}$を
みたす有理数$x,y$を求めよ.
この動画を見る 

弘前大(医)3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^3+3nx^2-(3n+2)=0$

(1)すべての自然数$n$において正の解はただ1つであることを示せ.
(2)正の解を$a_n$とする.$\displaystyle \lim_{n\to \infty} a_n$を求めよ.

弘前大(医)過去問
この動画を見る 

【数学】中高一貫校用問題集数式・関数編:分数式を含む方程式の解法

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の方程式を解け。
(1)$\displaystyle \frac{x}{x^2-7x+10} -\frac{10}{x^2-5x} =\frac{2}{x}$
(2)$\displaystyle \frac{x}{x^2+3x+2} =\frac{2}{x+2} -1$
この動画を見る 

福田の数学〜京都大学2025理系第1問(1)〜複素数の絶対値の取り得る値の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(1)$i$は虚数単位とする。

複素数$z$が、

絶対値が$2$である複素数全体を動くとき、

$\left \vert z-\dfrac{i}{z}\right \vert$

の最大値と最小値を求めよ。

$2025$年京都大学理系過去問題
この動画を見る 
PAGE TOP