大小比較!この形は超頻出なので絶対に抑えておきたい問題【一橋大学】【数学 入試問題】 - 質問解決D.B.(データベース)

大小比較!この形は超頻出なので絶対に抑えておきたい問題【一橋大学】【数学 入試問題】

問題文全文(内容文):
$e^\pi$と$\pi^e$の大小を比較せよ。
一橋大過去問
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$e^\pi$と$\pi^e$の大小を比較せよ。
一橋大過去問
投稿日:2022.12.06

<関連動画>

【数Ⅲ】【微分とその応用】関数の最大と最小5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 関数 $y=xe^{-x^2+x}$の極値を求めよ。
(2) $2$次関数 $f(x)=ax^2+bx+c$に対して、$F(x)=xe^{f(x)}$で定義された関数$y=F(x)$が極値を持つための、定数$a,b,c$についての必要十分条件を求めよ。
この動画を見る 

京都大 関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$

すべての実数$x$にたいして不等式

$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ

出典:2014年京都大学 過去問
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第1問〜2直線のなす角の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $xy$平面上の曲線$y=x^3$を$C$とする。$C$上の2点$A(-1,-1), B(1,1)$をとる。
さらに、$C$上で原点$O$と$B$の間に動点$P(t,t^3)(0 \lt t \lt 1)$をとる。このとき、
以下の問いに答えよ。
(1)直線$AP$と$x$軸のなす角を$\alpha$とし、直線$PB$と$x$軸のなす角を$\beta$とするとき、
$\tan\alpha,\tan\beta$を$t$を用いて表せ。ただし、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2},\ 0 \lt \beta \lt \displaystyle \frac{\pi}{2}$とする。

(2)$\tan\angle APB$を$t$を用いて表せ。

(3)$\angle APB$を最小にする$t$の値を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 

【数Ⅲ】【微分】f(b)-f(a)/b-a=f'(c),a<c<bにおいてb-a=h,c-a/b-a=θとおくと f(a+h)=f(a)+hf'(a+θh),0<θ<1 と表されることを示せ

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$f(x)$は閉区間$[a,b]$で連続で、開区間$(a,b)$で微分可能であるとする。
平均値の定理の式
$\dfrac{f(b)-f(a)}{b-a}=f'(c),a< c< b$
において
$b-a=h, \dfrac{c-a}{b-a}=\theta$とおくと
$f(a+h)=f(a)+hf'(a+\theta h),0 < \theta < 1$
と表されることを示せ。
この動画を見る 

【高校数学】数Ⅲ-98 対数関数の導関数①

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(\log x)’=①,\quad (\log_a x)'=②,\quad (\log \vert x \vert)'=③,$
$(\log_a \vert x \vert)'=④$

次の関数を微分せよ。

⑤$y=\log 6x$

⑥$y=\log(3x^2+1)$

⑦$y=x\log 2x$

⑧$y=\log_{10} (1-2x)$

⑨$y=\log \vert x^2-1 \vert$

⑩$y=\log_3 \vert x+5 \vert$
この動画を見る 
PAGE TOP