【高校数学】 数Ⅱ-131 対数とその性質① - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-131 対数とその性質①

問題文全文(内容文):
$a \gt 0.a≠1$とするとき、任意の正の数$M$に対して$a^{p}=M$となる実数$P$が、ただ1つ定まる。
この$P$を、$a$を①____とする$M$の対数といい、$\log_aM$と書く。 また、$M$をこの対数の②____という。(対数の②‗‗‗‗‗‗‗は③____)

◎次の関係を④~⑥は$p=\log_aM$、⑦~⑨は$a^{p}=M$の形で表そう。

④$3^4=81$

⑤$8^{\frac{2}{3}}=4$

⑥$9^{-\frac{1}{2}}=\displaystyle \frac{1}{3}$

⑦$\log_264=6$

⑧$\log_5\sqrt{ 5 }=\displaystyle \frac{1}{2}$

⑨$\log_{10}\displaystyle \frac{1}{1000}=-3$
単元: #指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0.a≠1$とするとき、任意の正の数$M$に対して$a^{p}=M$となる実数$P$が、ただ1つ定まる。
この$P$を、$a$を①____とする$M$の対数といい、$\log_aM$と書く。 また、$M$をこの対数の②____という。(対数の②‗‗‗‗‗‗‗は③____)

◎次の関係を④~⑥は$p=\log_aM$、⑦~⑨は$a^{p}=M$の形で表そう。

④$3^4=81$

⑤$8^{\frac{2}{3}}=4$

⑥$9^{-\frac{1}{2}}=\displaystyle \frac{1}{3}$

⑦$\log_264=6$

⑧$\log_5\sqrt{ 5 }=\displaystyle \frac{1}{2}$

⑨$\log_{10}\displaystyle \frac{1}{1000}=-3$
投稿日:2015.09.17

<関連動画>

指数・対数・対称式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
43^x=2021 \\
47^y=2021
\end{array}
\right.
\end{eqnarray}$

$\dfrac{5xy+x+y}{4xy-x-y}$の値を求めよ.
この動画を見る 

指数・対数の基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^x=9^y=2025$である.
$\dfrac{xy}{x+y}$の値を求めよ.
この動画を見る 

ざ・息抜き

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
この動画を見る 

練習問題15 教採模試(対数の性質)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$m,n\in IN$
$\log m+\log \left(1+\dfrac{1}{m}\right)+\log \left(1+\dfrac{1}{m+1}\right)$
$+・・・+\log\left(1+\dfrac{1}{m+n-1}\right)$
$=\log \ m+\log\ n$

$m,n$の値を求めよ.
この動画を見る 

16大阪府教員採用試験(数学:高校1番 積分)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#対数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1⃣ $f(x)=\int_1^e |logt-logx|dt (1 \leqq x \leqq e)$
(1)f(x)を求めよ。
(2)f(x)の最大値、最小値を求めよ。
この動画を見る 
PAGE TOP