【数A】確率:感覚でわかる最短経路 - 質問解決D.B.(データベース)

【数A】確率:感覚でわかる最短経路

問題文全文(内容文):
<最短経路の問題>AからPを通ってBに着く確率は?
チャプター:

0:00 本編開始

単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
<最短経路の問題>AからPを通ってBに着く確率は?
投稿日:2022.05.30

<関連動画>

数学「大学入試良問集」【5−8 余事象の確率①】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
偶数の目が出る確率が$\displaystyle \frac{2}{3}$であるような、目の出方にかたよりのあるサイコロが2個あり、これらを同時に投げるゲームを行う。
、これらを同時に投げるゲームを行う。
両方とも偶数の目が出たら当たり、両方とも奇数の目が出たら大当たりとする。
このゲームを$n$回繰り返すとき、次の問いに答えよ。

(1)大当たりが少なくとも1回は出る確率を求めよ。
(2)当たりまたは大当たりが少なくとも1回は出る確率を求めよ。
(3)当たりと大当たりのいずれもが少なくとも1回は出る確率を求めよ
この動画を見る 

【受験対策】数学-確率③

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①大小2つのさいころを同時に投げ、異なる目が出た場合は、出た目の数の大きい方を得点とし、2つとも同じ目が出た場合は、出た目の数の和を得点とする。
これらのさいころを1回投げたとき、得点が4点となる確率を求めよう。

② 右の図のように、点、A、B、C、D、E、F、G、Hを頂点とする 立方体があり、この頂点上を移動する2点、P,Qがある。
大小2つのさいころを同時に1回投げる。
点Pは、点Aを出発点として、大きいさいころの出た目の数だけ、→B→C→D→A→B→C の順に移動し、点Qは、点Eを出発点として、小さいさいころの出た目の数だけ、→H→G→F→E→H→Gの順に移動する。
このとき、直線PQと直線CGが、ねじれの位置にある確率を求めよう。
ただし、さいころを投げるとき、1から6までのどの目が 出ることも同様に確からしいものとする。

※図は動画内参照
この動画を見る 

【高校数学】集合の基礎例題2題~苦手な人は一緒に解こう~ 1-3.5【数学A】

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1から12までの自然数全体の集合を全体集合とし、2の倍数全体の集合をA、
3の倍数全体の集合をBとする。

このとき、次の集合を求めよ。
U={1,2,3,4,5,6,7,8,9,10,11,12}, A={2,4,6,8,10,12}, B={3,6,9,12}

(1)$A \cap B$={6,12}

(2)$A \cup B$={2,3,4,6,8,9,10,12}

(3)$\overline{ A }$={1,3,5,7,9,11}

(4)$\overline{ B }$={1,2,4,5,7,8,10,11}

(5)$\overline{ A }$$\cap$$\overline{ B }$={1,5,7,11}

(6)$\overline{ A }$$\cap B$={3,9}

(7)$A \cup$$\overline{ B }$={1,2,4,5,6,7,8,10,11,12}

(8)$\overline{ A \cup B }$={1,5,7,11}

-----------------

全体集合$ U $={1,2,3,4,5,6,7,8,9}の部分集合$ A,B $について、
$\overline{ A } \cap \overline{ B }$={1,4,8}, $\overline{ A } \cap B $={6,9}, $ A \cap \overline{ B } $={2,5,7}のとき、次の集合を求めよ。

(1)$A \cup B$={2,3,5,6,7,9}

(2)$A$={2,3,5,7}

(3)$B$={3,6,9}
この動画を見る 

正方形何個できる? 福岡大附属大濠

アイキャッチ画像
単元: #数A#場合の数と確率#図形の性質#場合の数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
縦横等間隔に並ぶ16個の点
4つの点を選んで正方形をつくる。
何通りできる?
*図は動画内参照
福岡大附属大濠高等学校
この動画を見る 

福田のわかった数学〜高校1年生073〜場合の数(12)組み分け

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(12) 組み分け
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。
\begin{array}{|c|c|c|c|c|}
\hline
      & 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
      & 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
この動画を見る 
PAGE TOP