大学入試問題#151 東北大学2020 定積分 - 質問解決D.B.(データベース)

大学入試問題#151 東北大学2020 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{(1+x^2)^3}$を計算せよ。

出典:2020年東北大学 入試問題
チャプター:

04:02~ 解答のみ掲載 約10秒間隔

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{(1+x^2)^3}$を計算せよ。

出典:2020年東北大学 入試問題
投稿日:2022.03.25

<関連動画>

福田のおもしろ数学227〜極限と区分求積法

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty}\dfrac1n\sqrt[n]{_{2n}\mathrm{P}_n}$を求めよ
この動画を見る 

福田の数学〜上智大学2022年理工学部第1問(3)〜定積分の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}\ (3)\int_0^{\frac{2}{3}\pi}x\sin2xdx=\frac{\pi}{\boxed{イ}}+$
$\frac{\boxed{ウ}}{\boxed{エ}}\sqrt{\boxed{オ}}$である。

2022上智大理工学部過去問
この動画を見る 

08東京都教員採用試験(数学:4番 極値)

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n:$自然数
$f_n(x)=\displaystyle \int_{x}^{x+1}\displaystyle \frac{t^n}{t^{2n}+2}\ dt$は$x=1$で極値をとるときの$n$と$f_n(1)$を求めよ。

出典:東京都教員採用試験
この動画を見る 

【高校数学】毎日積分54日目 実践編⑤回転体シリーズ~斜めで、切り取って、最短距離のフルコース~【難易度:★★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$xyz$空間内において、連立不等式
$\frac{x^2}{4}+y^2≦1 , |z|≦6$
により定まる領域を$V$とし、2点$(2,0,2),(-2,0,-2)$を通る直線を$l$とする。
(1)$|t|≦2\sqrt2$を満たす実数tに対し、点$P_t(\frac{t}{\sqrt{2}},0,\frac{t}{\sqrt{2}})$を通り$l$に重直な平面を$H_t$とする。また、実数$\theta$に対し、点$(2\cos\theta,\sin\theta,0)$を通り$z$軸に平行な直線を$L_{\theta}$とする。$L_{\theta}$と$H_t$との交点の$z$座標を$t$と$\theta$を用いて表せ。
(2) $l$を回転軸に持つ回転体で$V$に含まれるものを考える。このような回転体のうちで体積が最大となるものの体積を求めよ。
【東京工業大学 2018】
この動画を見る 

大学入試問題#146 東京工業大学(1966) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}xe^x\sin\ x\ dx$を計算せよ。

出典:1966年東京工業大学 入試問題
この動画を見る 
PAGE TOP