福田の数学〜早稲田大学2021年人間科学部第4問〜領域における最大最小 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年人間科学部第4問〜領域における最大最小

問題文全文(内容文):
${\Large\boxed{4}}$ 
不等式$(x-6)^2+(y-4)^2 \leqq 4$の表す領域を点$\textrm{P}(x,y)$が動くものとする。
このとき、$x^2+y^2$の最大値は$\boxed{\ \ タ\ \ }+\boxed{\ \ チ\ \ }\sqrt{\boxed{\ \ ツ\ \ }}$、$\dfrac{y}{x}$の最小値は$\dfrac{\boxed{\ \ テ\ \ }-\sqrt{\boxed{\ \ ト\ \ }}}{\boxed{\ \ ナ\ \ }}$、$x+y$の最大値は$\boxed{\ \ ニ\ \ }+\boxed{\ \ ヌ\ \ }\sqrt{\boxed{\ \ ネ\ \ }}$となる。

2021早稲田大学人間科学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ 
不等式$(x-6)^2+(y-4)^2 \leqq 4$の表す領域を点$\textrm{P}(x,y)$が動くものとする。
このとき、$x^2+y^2$の最大値は$\boxed{\ \ タ\ \ }+\boxed{\ \ チ\ \ }\sqrt{\boxed{\ \ ツ\ \ }}$、$\dfrac{y}{x}$の最小値は$\dfrac{\boxed{\ \ テ\ \ }-\sqrt{\boxed{\ \ ト\ \ }}}{\boxed{\ \ ナ\ \ }}$、$x+y$の最大値は$\boxed{\ \ ニ\ \ }+\boxed{\ \ ヌ\ \ }\sqrt{\boxed{\ \ ネ\ \ }}$となる。

2021早稲田大学人間科学部過去問
投稿日:2021.06.19

<関連動画>

福田の数学〜九州大学2022年文系第3問〜高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$k$を実数とし、整式f(x)を
$f(x)=x^4+6x^3-kx^2+2kx-64$
で定める。方程式$f(x)=0$が虚数解をもつとき、以下の問いに答えよ。
(1)f(x)は$x-2$で割り切れることを示せ。
(2)方程式$f(x)=0$は負の実数解をもつことを示せ。
(3)方程式$f(x)=0$の全ての実数解が整数であり、
すべての虚数解の実部と虚部が共に整数であるとする。
このような$k$を全て求めよ。

2022九州大学文系過去問
この動画を見る 

重積分⑩-4#150【曲面の面積】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$D:0\leqq x\leqq 4,0\leqq y\leqq 1$
$D$上における曲面$Z=\sqrt{4-y^2}$の面積$S$を求めよ.
この動画を見る 

【高校数学】 数Ⅱ-97 三角関数のグラフ③

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフと周期を書こう。

①$y=\sin \theta$

②$y=\cos \displaystyle \frac{\theta}{3}$

③$y=\tan3\theta$
この動画を見る 

広島大 対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$log_{2}3$は無理数、証明せよ


(2)
$p,q$は異なる自然数
$p$ $log_{2}3$と$q$ $log_{2}3$の小数部分は異なる。
証明せよ


(3)
$log_{2}3$の小数第一位の数を求めよ

出典:広島大学 過去問
この動画を見る 

室蘭工業大2020複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$z^2=2+\sqrt5 i$を解け.
②①の2つの解を$\alpha,\beta$とする.
複素平面上の$\alpha,\beta$を$A,B$とし$\triangle ABC$が正三角形になる点$C$の値
$\delta$を求めよ.

2020室蘭工業大過去問
この動画を見る 
PAGE TOP