福田の数学〜大阪大学2025文系第2問〜漸化式と数列の和 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2025文系第2問〜漸化式と数列の和

問題文全文(内容文):

$\boxed{2}$

次の条件によって定められる数列$\{ a_n\}$がある。

$a_1=1,a_{n+1}=\dfrac{2n-1}{2n}a_n \quad (n=1,2,3,\cdots)$

(1)正の整数$k,\ell$に対して

$\dfrac{k}{k+\ell-1}a_{k+1}a_{\ell}+\dfrac{\ell}{k+\ell-1}a_ka_{\ell+1}=a_ka_{\ell}$

が成り立つことを示せ。

(2)正の整数$m$に対して

$\displaystyle \sum_{k=1}^{m} a_ka_{m-K+1}=1$

が成り立つことを示せ。

$2025$年大阪大学文系過去問題
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

次の条件によって定められる数列$\{ a_n\}$がある。

$a_1=1,a_{n+1}=\dfrac{2n-1}{2n}a_n \quad (n=1,2,3,\cdots)$

(1)正の整数$k,\ell$に対して

$\dfrac{k}{k+\ell-1}a_{k+1}a_{\ell}+\dfrac{\ell}{k+\ell-1}a_ka_{\ell+1}=a_ka_{\ell}$

が成り立つことを示せ。

(2)正の整数$m$に対して

$\displaystyle \sum_{k=1}^{m} a_ka_{m-K+1}=1$

が成り立つことを示せ。

$2025$年大阪大学文系過去問題
投稿日:2025.06.16

<関連動画>

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。

2018名古屋大学理系過去問
この動画を見る 

数がでかすぎる!1の位の数字をどう求める?【東京大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(10^210)/(10^10+3)の整数部分のけた数と、1の位の数字を求めよ。ただし、3^21=10460353203を用いてよい。
この動画を見る 

【高校数学】 数B-96 数学的帰納法②

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$n$を自然数とするとき,
$11^n-1$は10の倍数であることを,数学的帰納法によって証明しよう.
この動画を見る 

福田のおもしろ数学011〜あけましておめでとうございます〜2024の階乗は末尾に0が何個並ぶか

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
2024 !の末尾に並ぶ 0 の個数を求めよ。
この動画を見る 

千葉大 漸化式 証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数

(1)
$a_{n}$は整数

(2)
$a_{n}$を3で割ると余りは2である

出典:2013年千葉大学 過去問
この動画を見る 
PAGE TOP