【中学数学】立命館高校の過去問~ぜひチャレンジしてね~【高校受験】 - 質問解決D.B.(データベース)

【中学数学】立命館高校の過去問~ぜひチャレンジしてね~【高校受験】

問題文全文(内容文):
正の数$a$に対して、ある操作を行って得られる値を記号$\langle\langle \rangle \rangle$を使って、$\langle \langle a \rangle \rangle$と表します。
この操作において,$\langle \langle a \rangle \rangle =0$となるのは、$a=1$ときのみ、$\langle \langle a \rangle \rangle =1$となるのは、$a=10$のときのみと約束します。
また、この操作は2つの正の数$a,b$に対して、$\langle \langle a \times b \rangle \rangle =\langle \langle a\rangle \rangle +\langle \langle b\rangle \rangle ,\langle \langle \displaystyle \frac{1}{a} \rangle \rangle =-\langle \langle a \rangle \rangle$という性質があります。

このとき、次の問いに答えよ。
(1)$\langle \langle \displaystyle \frac{y}{x} \rangle \rangle$を$\langle \langle x \rangle \rangle$と$\langle \langle y \rangle \rangle$を用いて表せ。
  ただし、$x,y$は正の数である

(2)$\langle \langle 1000 \rangle \rangle$の値を整数で答えよ
チャプター:

00:00 はじまり

00:18 問題

01:14 解説(1)

02:53 解説(2)

04:38 実はこのこと

05:55 問題と答え

単元: #数学(中学生)#高校入試過去問(数学)#立命館高等学校
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
正の数$a$に対して、ある操作を行って得られる値を記号$\langle\langle \rangle \rangle$を使って、$\langle \langle a \rangle \rangle$と表します。
この操作において,$\langle \langle a \rangle \rangle =0$となるのは、$a=1$ときのみ、$\langle \langle a \rangle \rangle =1$となるのは、$a=10$のときのみと約束します。
また、この操作は2つの正の数$a,b$に対して、$\langle \langle a \times b \rangle \rangle =\langle \langle a\rangle \rangle +\langle \langle b\rangle \rangle ,\langle \langle \displaystyle \frac{1}{a} \rangle \rangle =-\langle \langle a \rangle \rangle$という性質があります。

このとき、次の問いに答えよ。
(1)$\langle \langle \displaystyle \frac{y}{x} \rangle \rangle$を$\langle \langle x \rangle \rangle$と$\langle \langle y \rangle \rangle$を用いて表せ。
  ただし、$x,y$は正の数である

(2)$\langle \langle 1000 \rangle \rangle$の値を整数で答えよ
投稿日:2022.01.03

<関連動画>

【奥が深い?スッキリ解答】一次関数:函館ラ・サール高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
1次関数$ y=ax+3(a \lt 0)$
xの変域$ -2 \leqq x \leqq 5$であるとき,yの変域$ -2 \leqq y \leqq b $となるような
aとbの値を求めなさい.

函館ラサール高校過去問
この動画を見る 

整数問題 京都女子

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(2x-1)(y-3) =8$となる整数x、yの値を求めよ。

京都女子高等学校
この動画を見る 

【高校受験対策/数学/難解死守3】

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・難解死守3

①方程式$\frac{2x-3}{4}=\frac{x+2}{3}$を解け。

➁$\frac{x-6}{8}-0.75=\frac{1}{2}x$を解け

③$a^2-2b^2-ab+bc+ca$を因数分解せよ。

④$\sqrt{n^2+55}$が自然数となるような自然数$n$の値をすべて求めよ。


右の図のような台形$ABCD$があり、点$E$は辺$AB$の中点である。
また、線分$ED$上に点$F$を$EF:FD=2:5$となるようにとる。
このとき、$△ECF$の面積は台形$ABCD$の面積の何倍になるか求めよ。


3桁の正の整数$N$がある。
$N$を100で割った余りは百の位の数を12倍した数に1加えた数に等しい。
また、$N$の一の位の数を十の位に、$N$の十の位の数を百の位に、
$N$の百の位の数を一の位にそれぞれ置きかえてできる数はもとの整数$N$より63大きい。
このとき正の整数$N$を求めよ。
この動画を見る 

複雑にみえる連立方程式 慶應義塾

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
51x + 49y = 1 \\
49x + 51y = 2
\end{array}
\right.
\end{eqnarray}
$
慶應義塾高等学校
この動画を見る 

【正面突破なら…!】文字式:慶応志木高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式#高校入試過去問(数学)#慶應義塾志木高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x=\dfrac{7}{3+\sqrt2}$のとき,
$ (x-1)(x-2)(x-4)(x-5)$の値を求めよ.

慶応志木高校過去問
この動画を見る 
PAGE TOP