整数問題 浪速高校 - 質問解決D.B.(データベース)

整数問題 浪速高校

問題文全文(内容文):
$\frac{96}{(n-1)(n+1)}$が自然数となるような自然数nは何個?

浪速高等学校
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{96}{(n-1)(n+1)}$が自然数となるような自然数nは何個?

浪速高等学校
投稿日:2023.04.20

<関連動画>

19愛知県教員採用試験(数学:1-1,2番 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣2x+5y=43$\cdots$※
(1)※をみたす自然数の組(x,y)
(2)※をみたしx-2yがx+3yで割り切れる整数の組(x,y)の個数
この動画を見る 

大阪公立大 フェルマーの小定理を利用した証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#大阪公立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023大阪公立大学過去問題
p素数 a,n自然数
$4n^2+4n-1=ap$なら
①2n+1とapは互いに素であることを示せ
②$2^{\frac{p-1}{2}}-1$はpで割り切れることを示せ
この動画を見る 

【良問】面倒な作業は省略しろ!一橋大学の整数問題【数学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ 3q^3-p^2q-pq^2+3q^3=2013$を満たす正の整数$ p,q$をすべて求めよ。

一橋大過去問
この動画を見る 

モスクワ数学オリンピック 整数

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは自然数とするとき,
$1!+2!+3!+・・・・・・+x!=y^2$を求めよ.

モスクワ数学オリンピック過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第3問〜無理数である証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Oを原点とする座標平面において、第1象限に属する点P($\sqrt 2r$, $\sqrt 3s$)(r,sは有理数)をとるとき、線分OPの長さは無理数となることを示せ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 
PAGE TOP