大学入試問題#211 宮崎大学(2018) 定積分 - 質問解決D.B.(データベース)

大学入試問題#211 宮崎大学(2018) 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\sqrt{ 1+\sin\ x }\ dx$を計算せよ

出典:2018年宮崎大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\sqrt{ 1+\sin\ x }\ dx$を計算せよ

出典:2018年宮崎大学 入試問題
投稿日:2022.05.28

<関連動画>

福田のおもしろ数学454〜積分に関するシュワルツの不等式の証明と等号成立条件

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$p\leqq x \leqq q$で定義された連続関数$f(x),g(x)$に対して

$\left(\displaystyle \int_{p}^{q} f(x)^2 dx\right)\left(\displaystyle \int_{p}^{q}g(x)^2 dx \right) \geqq \left(\displaystyle \int_{p}^{q} f(x)g(x)dx\right)^2$

を証明して下さい。

また等号成立条件も調べて下さい。
   
この動画を見る 

09愛知県教員採用試験(数学:2番 極限値)

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq \displaystyle \frac{1}{\sqrt{ 3 }}$
$f(x)=\displaystyle \int_{x}^{\sqrt{ 3 }x}\sqrt{ 1-t^2 }\ dt$とする。

$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(x)}{x}$の極限値を求めよ。

出典:愛知県教員採用試験
この動画を見る 

大学入試問題#507「油断してると沼にはまりがち:良問」 長崎大学(2015) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{\tan\ x}{2-\cos\ 2x} dx$

出典:2015年長崎大学 入試問題
この動画を見る 

福田の数学〜東京工業大学2023年理系第1問〜定積分の値の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数$\displaystyle\int_0^{2023}\frac{2}{x+e^x}dx$の整数部分を求めよ。

2023東京工業大学理系過去問
この動画を見る 

大学入試問題#187 慶應義塾大学(2006) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^e}\displaystyle \frac{log(log\ x)}{x\ log\ x}\ dx$を計算せよ。

出典:2006年慶應義塾大学 入試問題
この動画を見る 
PAGE TOP