指数の計算 敬愛学園 令和4年度 2022 入試問題100題解説92問目! - 質問解決D.B.(データベース)

指数の計算 敬愛学園  令和4年度 2022 入試問題100題解説92問目!

問題文全文(内容文):
$2^{13}+2^{13}+2^{14}+2^{15}=2^▢$

2022敬愛学園
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{13}+2^{13}+2^{14}+2^{15}=2^▢$

2022敬愛学園
投稿日:2022.03.11

<関連動画>

数がでかすぎる!1の位の数字をどう求める?【東京大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(10^210)/(10^10+3)の整数部分のけた数と、1の位の数字を求めよ。ただし、3^21=10460353203を用いてよい。
この動画を見る 

あれですよ、あれ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{2^{54}+1}{2^{27}+2^{14}+1}$を7で割った余りを求めよ.
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第2問〜3次関数の法施線とグラフとの交点

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$y=x^3-x$により定まる座標平面上の曲線をCとする。
C上の点P$(\alpha,\alpha^3-\alpha)$を通り、
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。
(1)$\alpha$のとりうる値の範囲を求めよ。
(2)Cとlの点P以外の2つの交点のx座標を$\beta,\gamma$とする。ただし$\beta \lt \gamma$とする。
$\beta^2+\beta\gamma+\gamma^2-1\neq 0$ となることを示せ。
(3)(2)の$\beta,\gamma$を用いて、
$u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}$
と定める。このとき、uの取りうる値の範囲を求めよ。

2022東京大学文系過去問
この動画を見る 

福田のおもしろ数学427〜累乗の繰り返しの数と2025の大小比較

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a=\sqrt[2025]{2025}$とする。

$a^{a^{a^{\cdots a}}} \}2025$個と$2025$の大小を比較して下さい。
   
この動画を見る 

【高校数学】 数Ⅱ-139 指数関数・対数関数の最大値・最小値①

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①関数$y=2^{2x}-4・2^{x}+1$の最小値を求めよう。

②関数$y=\log_3(2x-x^2)$の最大値を求めよう。
この動画を見る 
PAGE TOP